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Titre : Méthode de couplage vague-morphodynamisme du littoral par principe de minimi-
sation.

Mot clés : Hydro-morphodynamisme, Optimisation, Validation de modèle, Littoral, Approche
variationnelle, Minimisation d’énergie, Transport Optimal, Ondes.

Résumé : Les modèles morphodynamiques
dans les eaux côtières peu profondes sont sou-
vent très complexes, en particulier lorsqu’il
s’agit de reproduire des phénomènes physiques
tels que la création de barres sédimentaires.
Les modèles classiques sont généralement hau-
tement paramétrés ; ils résolvent séparément
les équations physiques de l’hydrodynamique
et de la morphodynamique à une très petite
échelle de l’ordre de la seconde dans le temps
et du mètre dans l’espace. Durant cette thèse,
nous avons développé un modèle numérique
proposant une approche plus globale de la mor-
phodynamique côtière, basée sur un principe
d’optimisation.

La théorie de l’optimisation est l’étude de
l’évolution d’un système en recherchant systé-
matiquement le minimum d’une fonction dé-
rivée de certaines de ses propriétés physiques.
En utilisant la théorie de l’optimisation ma-
thématique, nous avons conçu un modèle qui
décrit l’évolution de l’élévation du fond marin
en tenant compte du couplage entre les proces-
sus morphodynamiques et hydrodynamiques.
Notre modèle est basé sur l’hypothèse que le
fond marin s’adapte pour minimiser l’énergie
des vagues. Le choix de cette fonction déter-

mine la force motrice de l’évolution morpholo-
gique du fond marin.

Les modèles basés sur le principe de mini-
misation reposent sur le calcul de certaines dé-
rivées. Ce calcul peut être effectué par des mé-
thodes lourdes (différentiation automatique)
ou plus légères (solution analytique), mais elles
présentent toutes des inconvénients. En utili-
sant la dérivée à la manière d’Hadamard, nous
avons élaboré une stratégie pour calculer le
gradient de toute fonction de coût par rapport
à la forme, ce qui nous permet de résoudre
le problème d’optimisation au cœur du mo-
dèle. Cette stratégie nous a permis de créer
un modèle morphodynamique générique qui
peut être utilisé avec n’importe quel outil hy-
drodynamique. Ainsi, notre modèle a pu être
validé numériquement (convergences, ...) mais
également expérimentalement à travers des cas
d’expériences en canal.

Grâce à ces développements, le code est
opérationnel en 1D et en 2D et est disposé à ré-
soudre des problèmes d’optimisation liés à l’in-
génierie côtière, visant à optimiser les positions
et les formes d’ouvrages de protection du litto-
ral.
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Title: Method of wave-morphodynamic coupling of the coastline by minimization princi-
ple.

Keywords: Hydro-morphodynamics, Optimization, Model validation, Coastal, Variational ap-
proach, Energy minimization, Optimal transport, Waves.

Abstract: Morphodynamical models in shallow
coastal waters is a challenging topic, especially
when trying to reproduce physical phenomena
such as sandbar creation. Classic models are
generally very complex and highly parameter-
ized; they separately solve the physical equa-
tions of hydrodynamics and morphodynamics
at a very small scale of the order of second in
time and meter in space. During this thesis, we
developed a numerical model proposing a more
global approach to coastal morphodynamics,
based on an optimization principle.

The optimization theory is the study of the
evolution of a system while searching system-
atically for the minimum of a function derived
from some of its physical properties. Using
mathematical optimization theory, we have
designed a model that describes the evolution
of the sea bottom elevation while taking into
account the coupling between morphodynamic
and hydrodynamic processes. Our model is
based on the assumption that the sea bottom
adapts to minimize a wave energy. The choice

of this function determines the driving force be-
hind the morphological evolution of the seabed.

Models based on the minimization prin-
ciple rely on the calculation of some deriva-
tives. This can be achieved by heavy methods
(automatic differentiation) and lighter ones
(analytical solutions); but they all have their
drawbacks. Our strategy uses the Hadamard
derivative to calculate the gradient of any cost
function with respect to shape, allowing us to
solve the optimization problem at the heart of
the model. This strategy has enabled us to cre-
ate a generic morphodynamic model that can
be used with any hydrodynamic tool. Thus,
our model has thus been validated both numer-
ically (convergences, etc.) and experimentally,
through flume canal experiments.

Thanks to these developments, the code is
operational in 1D and 2D and is ready to solve
optimization problems linked to coastal engi-
neering, aimed at optimizing the positions and
shapes of coastal protection structures.
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Acronyms

Symbol Description Units

η̄ the mean free surface level (m)

∆x Spatial step (m)

η Free surface level (m)

ηRMS Root Mean Square of η (m)

γ Munk breaking criterion (1)

J Functionnal to minimize
(
J s m−1

)
Λ Excitation of the seabed by the water waves (1)

EH Global Wave energy (J m−1)

EL2 Error from L2 space

ψ Sea-botton profil: bathymetry (m)

ψ0 Initial bathymetry (m)

ψ f Final bathymetry (m)

ρw Water density (kg.m−3)

σ Pulsation (s−1)

θ Direction (rad)

θM Mean wave direction (rad)
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Nomenclature

θm Wave direction for the frequency f (rad)

Υ Sediment mobility (m s kg−1)

A Wave action (J s m−2)

a Wave amplitude (m)

Ctide The tidal coefficient (1)

D Local water depth (m)

d Direction of the descent
(
J s m−2)

Dw Wave energy dissipation (J m−2 s−1)

EH Local Wave energy (J m−2)

h Water depth (m)

H0 Offshore water depth (m)

Hs Significant wave height (m)

HRMS Root Mean Square of H (m)

k Wavenumber (m−1)

ka, α Wave slope (1)

L Wave length (m)

Mslope Maximum sand slope (1)

mp Moment of power spectrum of order p (m2 rad−1 s−2−p)

Me f f The effective tidal range (m)

Mre f The reference tidal range (m)

niter Number of iterations (1)

q Flow, q = hu (m2.s−1)

T0 the wave period (s)

Tcoupl Coupling time interval between hydrodynamic and morphody-
namic models

(s)
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Nomenclature

Ttide The tide duration (h)

u Current (m.s−1)

x− ϵ Previous point of the discretization (m)

H Wave hight (m)

h Water depth (m)
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Actuellement, environ 30% de la population mondiale vit proche des côtes (Small
et al. 2003). Ces zones constituent des écosystèmes complexes, d’une richesse

environnementale inestimable. Au regard de la croissance démographique, des activ-
ités économiques grandissantes, des nouvelles infrastructures, du changement climatique
; il n’a jamais été aussi important de comprendre et d’anticiper les phénomènes du lit-
toral. Face à cet enjeu, la modélisation joue aujourd’hui un rôle majeur afin de préserver
ces zones côtières. Conjointement, les mathématiques et la physique permettent la com-
préhension des mécanismes du littoral ainsi que l’anticipation de leur impact sur les côtes.
Les mathématiques apportent des outils puissants permettant de résoudre numériquement
les problèmes physiques, tandis que la physique et l’hydrodynamique régissent les lois
et apportent une expertise pour évaluer la vulnérabilité des côtes aux inondations et à
l’érosion.

Ainsi, le développement de modèles numériques est un domaine de recherche en per-
pétuelle évolution. Ces modèles, ayant souvent l’ambition de prévoir au mieux les réper-
cutions côtières, fournissent des outils de prédiction et d’analyse, contribuant de manière
significative à une gestion efficace des zones côtières. Ceux-ci permettent de prendre des
décisions rationnelles afin d’atténuer les risques liés au changement climatique, de protéger
les populations et écosystèmes ainsi que favoriser un développement durable des régions
côtières.

I.1 CContexte de la Thèse

Cette thèse s’intègre à la suite de nombreux travaux issus du laboratoire de Geo-
Sciences et l’institut Montpelliérain Alexander Grothendieck de Montpellier. Frédéric
Bouchette, Bijan Mohammadi et Pascal Azerad ont été à la tête de ces travaux.
Ils ont commencé en 2004 en partenariat avec l’entreprise BRLi en travaillant sur : la for-
mulation d’une théorie de l’optimisation adaptée au domaine de l’hydromorphodynamisme
du littoral, des développements numériques basés sur cette théorie et la conception de sys-

21

INTRODUCTION



Introduction

tèmes optimaux de protection du littoral contre la submersion, l’érosion littorale, l’impact
des vagues contre les ouvrages, etc. Ces travaux ont vécu à travers 4 thèses : Damien
Isèbe, Afaf Bouharguane, Megan Cook et Ronan Dupont. Ils s’achèveront donc
avec cette thèse. Initialement, les travaux se concentraient sur l’optimisation de struc-
tures de protections du littoral puis se sont tournés vers le développement de modèles
morphodynamiques basés sur le principe de minimisation. L’historique de ces travaux a
été retracé dans l’état de l’art 0. Cette thèse vient à la suite de celle de Cook (2021). Le
financement de celle-ci provient du CNRS, dans le cadre des Mission pour les initiatives
transverses et interdisciplinaires (MITI - www.miti.cnrs.fr). Cette thèse a donc la
possibilité d’être un projet exploratoire purement académique. Initialement, les travaux
de cette thèse ont été découpés en 3 axes comme explicités ci-dessous.

I.1.1 Axe 1 : Développements Théoriques

Le premier axe consiste à reformuler les principes physiques de l’hydro-morphodynamisme
du littoral sous la forme d’un problème optimal général. Cette nouvelle approche s’appuiera
sur un nombre très réduit de paramètres, refondant complètement la manière de penser
le transport sédimentaire. Les paramètres ne devront plus référer aux paramètres du
transport sédimentaire classique comme le nombre de Shield (Nielsen 2002). Le modèle
ne devra pas s’appuyer sur la paramétrisation des équations de transports issues des ap-
proches Bagnold (1966). L’ambition des développements mathématiques est d’étendre le
formalisme afin qu’il soit générique: il devra être utilisé très facilement avec n’importe
quel modèle hydrodynamique.

I.1.2 Axe 2 : Développement de l’Outil de Calcul Numérique

Le second axe consiste à développer un outil de calcul numérique implémentant cette
nouvelle approche théorique, dans un contexte bien circonscrit, limité, compatible avec
la durée du projet et un travail de doctorat. Les développements théoriques de l’axe 1
devront être implémentés dans un code unique. Le modèle morphodynamique doit être
capable de se coupler avec différents types de modèles hydrodynamiques.

I.1.3 Axe 3 : Validations du Modèle

Le troisième axe consistera à valider les développements théoriques de cet outil de
modélisation. L’outil sera confronté à la réalité de terrain, dans une démarche typiquement
physique. Sur ce point, le projet bénéficie dès son démarrage de la base de données issue
de nombreuses expérimentations en milieu contrôlé ou in situ déjà réalisées et validées par
le partenaire GLADYS (www.gladys-littoral.org). En effet, l’institut des plages
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GLADYS a la vocation régionale/nationale de capitaliser et partager des campagnes de
mesure littorale à haute valeur académique (donnée très bien contrainte et validée).

I.2 OObjectifs de la Thèse

Les travaux de Cook (2021) ont donné naissance à une première version du modèle
OptiMorph utilisant le principe de minimisation appliqué à la modélisation morphody-
namique du littoral. Il convient de poursuivre les développements afin d’étendre les vali-
dations numériques / expérimentales. Il est très important que les développements mathé-
matiques et expérimentaux soient mis en avant à travers des publications scientifiques. En
effet, cette nouvelle méthode de modélisation décrite comme "originale", soulève souvent
quelques réticences dans la communauté du littoral. Il est donc très important d’apporter
un maximum d’éléments justifiant nos hypothèses ainsi que la pertinence de notre modèle.
Un grand travail de médiation est à prévoir à travers des communications, publications,
enseignements, etc.

I.3 MModélisation du Littoral

I.3.1 Modélisation Morphodynamique des Plages

Durant cette thèse, nous nous sommes principalement concentrés sur la modélisation
morphodynamique des plages. Elle caractérise l’évolution de la morphologie d’une plage,
à savoir l’évolution de son fond marin. Il existe de nombreuses méthodes permettant
de calculer la morphodynamique. Ces modèles englobent les modèles empiriques ainsi
que les modèles basés sur le processus. Ces derniers peuvent être classés en plusieurs
catégories, telle que i) les modèles d’évolution des profils (Larson et al. 1989; Larson et al.
1990; Nairn et al. 1993), qui utilisent uniquement le transport transversal, ii) les modèles
basés sur des règles (Storms et al. 2002; McCarroll et al. 2021), fondés sur un certain
nombre de règles telles que la règle de Bruun (1954), iii) les modèles morphologiques 2D
(Fleming et al. 1977; Latteux 1980; Coeffe et al. 1982; Yamaguchi et al. 1985; Watanabe
et al. 1986; Maruyama et al. 1988; Wang et al. 1993; Johnson et al. 1995; Nicholson
et al. 1997; Roelvink et al. 2009), qui utilisent des équations de vagues et de courants
moyennées en profondeur pour modéliser le transport des sédiments tout en négligeant
les variations verticales des paramètres dérivés des vagues, ainsi que iv) les modèles 3D et
quasi-3D (Roelvink et al. 1994; Lesser et al. 2004; Roelvink et al. 1995a; Briand et al. 1993;
Zyserman et al. 2002; Ding et al. 2006; Droenen et al. 2007), qui déterminent l’évolution
des sédiments en utilisant les variations horizontales et verticales des paramètres dérivés
des vagues.
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Le modèle OptiMorph (Cook 2021; Dupont et al. 2022; Dupont et al. 2023; Dupont
et al. 2024) est basé sur le contrôle optimal. Cette méthode d’optimisation appliquée
au littoral est née après de nombreux travaux sur le littoral. Les premières idées de F.
Bouchette, B. Mohammmadi & al étaient de travailler directement sur l’optimisation
de structures de protection du littoral (Isèbe et al. 2008b). Ensuite, des travaux se sont
concentrés sur la position optimale de structures de protection du littoral comme les
Géotubes (Isèbe et al. 2008b; Cook et al. 2021b).

C’est enfin en 2011 que ces applications d’optimisation sur le littoral ont pris une
dimension différente. La question qui s’est posée est la suivante : “Et si on ne cherchait
pas cette fois-ci la forme ou l’emplacement optimal d’une structure, mais on cherchait
la forme optimale de la plage”, ceci a été inspiré des surfaces minimales dans la nature,
comme par exemple les surfaces des bulles de savon (Taylor 1976). C’est donc à partir de là
que le concept de morphodynamique des plages par calcul optimal est né. Cette question
appelait directement d’autres questions physiquement plus compliquées. En effet, il est
intéressant d’optimiser la forme d’une plage, mais ceci nécessite de l’optimiser selon un
critère bien particulier que l’on appellera fonction de coût J . Il a donc été important
de déterminer des hypothèses afin de pouvoir optimiser celle-ci. La dernière hypothèse a
été d’admettre que “La nature cherche à minimiser l’énergie qu’elle dépense” et donc cela
reviendrait à dire que la plage cherche à évoluer de telle sorte que l’énergie des vagues soit
la minimale. Des explications sur cette hypothèse sont apportées dans la section suivante
I.3.2. C’est sur cette citation que les développements de Cook (2021) ont été effectués
pour donner naissance à Optimorph, un code de calcul morphodynamique 1D reposant
sur la théorie du transport optimal et nécessitant un nombre très réduit de paramètres
physiques. Des premiers travaux de validation ont été effectués notamment en confrontant
ce modèle à d’autres modèles très classiques comme XBeach (Cook 2021). La suite de ces
travaux de développement et validation sont présentés dans cette thèse.

I.3.2 Hypothèse : la Nature Cherche à Minimiser l’Énergie qu’elle Dépense

La vérification de l’hypothèse que la nature cherche à minimiser l’énergie qu’elle
dépense peut se faire sur des cas très simples. Par exemple, il est possible d’observer
l’évolution de l’énergie des vagues EH = 1

16 ρwg
∫

Ω H2 dΩ sur différents types de fonds
marins : des fonds expérimentaux, des fonds provenant de mesures en pleine mer, d’autres
s’inspirant de profils de plages à l’équilibre (Bruun 1954), ... Le but de ces observations
vise à montrer que l’énergie des vagues est de plus en plus faible au fil du temps.

Il est très difficile d’obtenir des mesures morphodynamiques et hydrodynamiques com-
plètes. La plupart du temps, les jeux de données morphodynamiques sont complets, mais
l’hydrodynamique ne contient que quelques points de mesure : c’est le cas de l’expérience
en canal LIP 1C (Roelvink et al. 1995b) (décrite dans le chapitre 3 section 3.4.1.2). Pour
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ce cas-là, il convient donc de simuler la propagation de vagues avec des modèles comme
XBeach (utilisé uniquement en modèle de vagues) (Roelvink et al. 2010; Daly 2009; Buga-
jny et al. 2013; Williams et al. 2015) afin de compléter artificiellement la donnée. Avec
l’avancée des technologies, la technologie LIDAR permet d’obtenir des jeux de données
complets : sur un tronçon entier. C’est le cas de l’expérience DynaRev (Blenkinsopp et al.
2021; Schimmels et al. 2020; Martins et al. 2020).

Nous commençons donc par utiliser les données expérimentales très reconnues LIP11D
- 1C (Roelvink et al. 1995b) où on observe une barre sédimentaire se déplacer au fil
de l’expérience. Ces données ont été cruciales dans la validation du modèle hydro-
morphodynamique XBeach. Les conditions de cette expérience sont les suivantes : une
période de vague T0 = 5 s, un forçage de vague de Hs = 1.4 m et une durée totale de
Tf = 13 h. Deux simulations hydrodynamiques seront effectuées, une sur la bathymétrie
initiale ψ0 (correspondant à t = 0 h) et une sur la bathymétrie finale ψ f (correspondant
à t = 13 h). Les résultats de ces simulations ainsi que les calculs de EH sont présentés
sur la figure I.1.1.
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Figure I.1 – 1) Expérience LIP 1C avec H généré par XBeach. 2) Expérience DynaRev avec H mesuré par LIDAR. a)
Fond marin et Hauteur d’eau moyennée au début de l’expérience (gris), Fond marin et Hauteur d’eau moyennée à la fin de
l’expérience (marron). b) Énergies des vagues associées aux hauteurs d’eaux. L’énergie est calculée sur le rectangle gris.

Ici, d’après la figure I.1.1b, il est évident que l’énergie des vagues à la fin de la sim-
ulation EH(t = 13 h) est plus faible que l’énergie au début EH(t = 0 h). Sur le do-
maine sélectionné ΩA (figure I.1.1), celle-ci est 10% plus faible que l’énergie initiale (ie,
EH(t = 12 h) = 0.90 EH(t = 0 h)). L’hypothèse est valable pour cette expérimentation.

Une autre vérification possible est d’utiliser les données LIDAR DynaRev (Blenkin-
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sopp et al. 2021; Schimmels et al. 2020; Martins et al. 2020). Dans cette expérience,
le bathymétrie est initialement linéaire puis une barre se crée au fil du temps (en 20h
d’expérimentation). Cette expérience est très réaliste, car les barres sédimentaires sont
très souvent observées dans la nature (Wright et al. 1984). Nous prendrons donc la
bathymétrie initiale de l’expérience ψ0 (t = 0 h) et la bathymétrie finale ψ f (t = 20 h)
ainsi que les hydrodynamiques associées (Martins et al. 2020). Toutes les données sont
expérimentales. Celles-ci sont présentées sur la figure I.1.2.

De même, d’après la figure I.1.2b, il est évident que l’énergie des vagues à la fin de
l’expérience EH(t = 20 h) est plus faible que l’énergie au début EH(t = 0 h). Sur le
domaine sélectionné ΩA (figure I.1.1), celle-ci est 10% plus faible que l’énergie initiale
(ie, EH(t = 12 h) = 0.90 EH(t = 0)). L’hypothèse est valable pour cette expérimentation
également.

I.3.3 Comment Traiter le Problème de Minimisation ?

Une fois l’hypothèse "la nature minimise l’énergie qu’elle dépense" vérifiée, il convient
de traduire cela par le problème de minimisation suivant. Il faut chercher ψ, le fond marin
de telle sorte que la fonctionnelle J = EH soit la plus faible possible. Ceci ce traduit
mathématiquement par l’équation (I.1) suivante.

min
ψ
J avec J =

1
16

ρwg
∫

Ω
H2dΩ. (I.1)

En l’état, une solution de (I.1) serait d’avoir un mur à l’entrée du domaine, qui empêcherait
toute propagation de vague possible (sans eau, la fonction de coût J est nulle). Certaines
contraintes physiques doivent donc être ajoutées. Une pente maximale de notre plage
afin de ne pas avoir de pentes aberrantes ; une contrainte de conservation sableuse qui
pourra être activée dans un domaine fermé ; ainsi qu’une contrainte d’excitation sableuse
qui augmentera ou limitera la mobilité du sable en fonction de sa profondeur et des
conditions de vagues (par exemple, il est impossible d’avoir un mouvement sédimentaire
à 3000 m de profondeur dû aux vagues à la surface). Les définitions de ces contraintes
physiques seront revues dans le chapitre 1.

Dans la littérature, il existe une multitude de méthodes d’optimisation (Mohammadi
et al. 2009; Munk et al. 2015) pour traiter le problème de minimisation (I.1). Il existe
deux grandes familles de méthodes : celles déterministes, basées sur le gradient (descente
du gradient, Newton, ...) et celles stochastiques (algorithmes évolutionnistes, ...).

Naïvement, un choix pourrait être de résoudre le problème (I.1) par une méthode
stochastique basée sur l’évolution des populations. Ici, la population ψi=0,...,Npop est
une population de fonds marins satisfaisant les contraintes de pente et de conservation
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sableuse, afin d’obtenir le résultat le plus réaliste possible. La méthode choisie fait partie
des plus renommées : l’utilisation d’un algorithme génétique basé sur des duels (Biyanto
et al. 2016). À chaque génération, un duel a lieu entre deux individus de la population, le
perdant, ayant la fonction de coût J la plus forte, subira une mutation. Cette méthode
d’optimisation est illustrée sur le workflow figure I.2. Plus d’explications sur les étapes
sont données dans l’annexe A.
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1) Initial population

Assessment of population

3) Mutation of the worst child from the better
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Figure I.2 – Workflow d’un algorithme génétique basé sur les duels pour résoudre le problème de minimisation (I.1). Plus
d’explications dans l’annexe A.

Les résultats de l’optimisation (figure I.2.4) montrent que le problème (I.1) a bien été
résolu en satisfaisant les contraintes de pente et de conservation sableuse. En effet, le fond

28



Introduction

marin va chercher à se rapprocher le plus vite possible de la surface tout en satisfaisant
la contrainte de pente ainsi que le point fixe au bord du domaine (x = 0 m). On peut de
plus observer dans l’annexe la figure A.2 montrant que la fonction de coût J baisse de
génération en génération. Cette résolution du problème de minimisation (I.1), bien qu’elle
soit réussite, ne satisfait pas nos exigences de modélisation morphodynamique. En effet,
le profil proposé I.2.4) n’est pas très réaliste bien qu’il puisse nous faire penser à un banc
de sable. De plus, le problème (I.1) sans contrainte pourrait se résoudre en proposant la
solution d’un fond marin supérieure au niveau de l’eau dés x = 0. Ceci empêcherait toute
vague de se former et l’énergie des vagues serait donc nulle (J = 0).

Il est donc nécessaire de préciser que nous ne cherchons pas la solution absolue du
problème de minimisation (I.1). En effet, nous voulons un modèle morphodynamique
qui puisse décrire l’évolution du fond marin en fonction du temps. Il convient donc de
privilégier les méthodes d’optimisation basées sur le calcul du gradient (Mohammadi et al.
2009) qui vont nous permettre de successivement déterminer l’évolution du fond marin.
Le problème d’optimisation (I.1) est donc à considérer au sens du transport optimal. À
chaque itération, le fond marin se dirigera vers la solution optimale de ce problème. En
faisant tendre le nombre d’itérations à l’infini, la solution trouvée serait celle proposée
en figure I.2.4). L’avantage de cette méthode est qu’elle permet l’introduction du temps,
et donc, la variation des forçages à chaque instant : ce qui nous rapproche d’un modèle
réaliste.

I.4 OOrganisation de la Thèse

Le manuscrit commence par un état de l’art 0 qui retrace les travaux initiés en 2004 par
F. Bouchette et B. Mohammadi. La description des travaux commence par des prob-
lématiques d’optimisation de formes ou de position de structures de défense côtière. La
finalité des travaux concerne la modélisation morphodynamique par optimisation. C’est
sur la suite de ces travaux que la thèse commence.

Le chapitre 1 va se concentrer sur la nouvelle approche pour décrire la morpho-
dynamique côtière, basée sur la théorie de l’optimisation, et plus spécifiquement sur
l’hypothèse qu’un profil de plage sableuse évolue afin de minimiser une fonctionnelle liée
aux vagues, dont le choix dépend de ce qui est considéré comme la force motrice der-
rière les processus morphodynamiques côtiers considérés. Une validation numérique et
expérimentale sera présentée ainsi qu’une extension du modèle en dimension supérieure.

Le chapitre 2 commencera par les équations fondatrices des mouvements fluides pour
arriver à la théorie linéaire ainsi qu’aux deux grandes familles de modèles hydrody-
namiques : les modèles à phase résolue et les modèles spectraux. Ceci permet d’introduire
les modèles hydrodynamiques utilisés dans OptiMorph dans le chapitre 3. Certains sont

29



Introduction

à résolution spectrale comme XBeach ou SWAN, mais aussi à phase résolue comme le
modèle Shallow-Water ou REF/DIF. Nous présenterons également un modèle hydrody-
namique à faible complexité. Ces modèles sont comparés sur le cas expérimental LIP
1C.

Dans le chapitre 3, nous présenterons la stratégie d’Hadamard pour rendre notre mod-
èle générique. Grâce à ces avancées, le modèle morphodynamique pourra être couplé à
n’importe quel modèle de vagues. Nous utiliserons les modèles de vagues de SWAN,
XBeach et Shallow-Water dans notre modèle, et nous comparerons les résultats morpho-
dynamiques aux benchmarks hydro-morphodynamique LIP 1C et SANDS ainsi qu’à des
simulations en pleine mer.

Dans le chapitre 4, nous étendons l’approche du chapitre 3 à la dimension 2D. Nous
effectuerons les développements mathématiques du formalisme en 2D et regarderons la
validité de ce formalisme. Nous utiliserons notre modèle morphodynamique couplé avec
les modèles REF/DIF et Shoaling en multi-1D. Nous effectuerons une validation morpho-
dynamique sur l’expérience Copter en 2D.

Le chapitre 5 est un guide explicatif de la deuxième version du modèle numérique Op-
tiMorph. La nouvelle version du modèle OptiMorph basé sur l’hydro-morphodynamique
côtière par principe de minimisation sera présentée. Des exemples et explications seront
apportés afin d’utiliser ce modèle et de le coupler avec n’importe quels modèles de vagues
(on pourra facilement prendre XBeach et SWAN).
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The emergence of morphodynamic modeling
by the principle of constrained minimization

In this state of the art, we follow the work developed by B. Mohammadi, F.
Bouchette and P. Azerad, as part of a collaboration between Montpellier’s
geosciences and mathematics departments. This work ranges from optimising
the shape or position of coastal defence structures to morphodynamic modelling
through optimisation.
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State of the Art 0 – The emergence of morphodynamic modeling by the principle of constrained
minimization

0.1 IIntroduction

Long time before the advent of morphodynamic modelling by minimization, a great
deal of optimization work applied to the coast was carried out between the Geo-

Sciences laboratory and the Alexander Grothendieck Institute in Montpellier. Frédéric
Bouchette, Bijan Mohammadi and Pascal Azerad have initiated these works.
They began in 2004 in partnership with the company BRLi, working on the formulation
of an optimization theory adapted to the field of coastal hydromorphodynamics, and on
numerical developments based on this theory and designed to invent optimal systems for
coastal protection against submersion, coastal erosion, the impact of waves against struc-
tures, and so on. This shape-optimization work lived through the two theses of Damien
Isèbe and Afaf Bouharguane. They developed numerous optimization models and
applied this work to places like Sète in France. In this state of the art, we follow all
the coastal optimization concepts that gave rise to the idea of using this in morphody-
namic modeling. The overall concept of coastal optimization is absent from the literature,
and non-modeling cases do not present data for validation. These concepts are mainly
exploited at the University of Montpellier. The optimization-based concept for morpho-
dynamic modelling will be at the heart of the thesis.

0.2 OOptimization on Coastal Protection Structures

The first part of this state of the art will show the works that preceded the evolution
of beach morphodynamics. At first, these works were mainly concerned with coastal
protection structures such as geotextiles tubes.

0.2.1 Optimal Shape of Structures

This works of optimization of the shape of coastal defense structures focused at first on
structures allowing breaking the wave agitation on a particular domain (Isèbe et al. 2008b).
The hydrodynamics on the domain is modeled by Helmholtz (1868) wave equations which
assumes a flat bottom, unlike Berkhoff (1972) model. This model is very suitable in deep
water. Then, it is necessary to evaluate the cost function J which is the energy norm L2 of
water waves free surface elevation η(x, t) in an admissible domain. Then an optimization
method is used to obtain the optimal form. In this case, the cost function is computed
so that the water height is the minimum on the whole domain. With this criterion, the
optimal shape obtained resembles the following figure 0.1.
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Figure 0.1 – Optimal shape minimizing a cost function J for a given parameterization.

In order to be sure of the viability of this structure, it is convenient to represent the water
height η in the 3 configurations of the following figure 0.2:

Figure 0.2 – Absolute value of ξ resulting from reflection (a) on rectangular structures perpendicular to the wall, (b) on
optimized structures without feasibility constraints, (c) on structures with the same angle as the optimized structures but
straight (NW incoming waves with T=2 s and a=0.5 m).

In the optimal structure configuration 0.2.(b), the average η water height is signifi-
cantly lower than the other configurations. It is also very surprising to see that in a case
very similar to the optimal structure 0.2.(c), the results seem to be very far from the
optimal results.
This concept has the advantage of being mathematically very clean and usable for other
shape optimization problems. However, with the knowledge of the current literature, it
was appropriate to reject the shape of the structure figure 0.1.
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0.2.2 Port of la Turballe

One of the major port development projects of the coming years is the development
of the port of La Turballe. For the dimensioning of this work, BRLi, a consulting firm
specialized in the fields related to water. They have hired Cook et al. (2021c) in order to
confirm their idea on the optimal configuration of the harbor. The purpose of this study
is to accommodate more boaters and reduce the agitation inside the harbor. The harbor
extensions shown in the following figure 0.3 were proposed.

Figure 0.3 – Possible configurations for the port of La Turballe

In this figure, there are two parameters to manage, namely the lengths of the structures
A and B. To manage this optimization, it is necessary to model the hydrodynamics of the
harbor. To do this, the Helmholtz (1868) model has been solved. Then, it was necessary
to create a cost function J minimizing the agitation in the port. This one was elaborated
in the following way in the equation (0.1).

Jn(ψ) =
1

K(P)
1

|Ω(ψ)|

∫
Ω(ψ)
En(ψ, x)P(x)dx (0.1)

The quantity En(ψ, x) is the total surface energy denoted on the domain, associated
with the forcing scenario n and the harbor configuration. The function P(x) is named
spatial weight function, which allows prioritizing the minimization of the agitation on
some privileged areas of the harbor as can be seen on the figure below 0.4:
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Figure 0.4 – Weight function P on Ω.

The functions K and |Ω(ψ)| are equal to K(P , Ω(ψ)) =
∫

Ω(ψ) P(x)dx and the total area
of the domain: this allows scaling the functional.
The functional cumulating the n scenarios is then computed in the following equation
(0.2):

J (ψ) =
∑N

n=1 ai(n)Jn(ψ)

∑N
n=1 ai(n)

(0.2)

with the ai(n) corresponding to the weights of the given n scenario. Once this parame-
terization is done, a grid of (α, β) ∈ [0, 150] x [0, 200] is created in order to compute all
the values of the functional for all these configurations. Thus, the optimal configuration
is the configuration where the couple (α, β) give the lowest functional J . This solution
presents on figure 0.5:

Figure 0.5 – Optimal pair of (α, β) for the configuration of the port of La Turballe.

shows us that there is a unique solution couple in the center of the domain. This work was
able to confirm the opinion that BRLi had on the strategic choices of sizing the port. The
solution was therefore chosen by BRLi for the completion of this project. As mentioned
above, the problem is mathematically very well posed and gives a solution that seems to
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suit BRLi. However, as this solution works for a given forcing, it is possible that in the
future, forcings will change and the solution will become unsuitable.

0.3 OOptimization of the Location of Costal Protection Struc-
tures

A new approach in terms of optimization of costal protection structures is to look for
the optimal position of a costal protection structure. Most of the time, we try to limit
the agitation of the waves, beach erosion, etc...

0.3.1 Position of Optimal Protection Structure at the Pointe de l’Espiguette

The works of Isèbe et al. (2008b), Isèbe et al. (2014) allowed to find the optimal po-
sition of a coastal defense structure which allows limiting the erosion of the beach of Le
Grau-du-Roi, Le Boucanet.
Using a numerical model similar to the one of the part 0.2.1, based on the resolution of
Helmholtz (1868) equations, the optimal configuration is searched so that the cost func-
tion J limits the erosion of the beach on a domain D.

Before defining the cost function, it is necessary to recall that observations of erosion
by oceanographers show that waves can be roughly classified into two categories according
to their height H, below or above a critical value Hlim. In principle, waves higher than
Hlim, mainly present during storms, are erosive. They generate a great mechanical energy.
On the other hand, when H < Hlim, the waves favor the reconstruction of eroded beaches.
The first class of waves (H > Hlim) is called erosive and the second-class constructive
(H < Hlim). The cost function Jθ is defined according to the direction of the wave θ

taking into consideration this limit height as follows:

Jθ =

∫
D EH>HlimdS∫
D EH<HlimdS

+
(
∥Uorb∥ −

∥∥∥Uinitial
orb

∥∥∥)
+
+

(∫
D

EH<HlimdS−
∫

D
EH<Hinitial

lim
dS
)
+

(0.3)
with (x)+ = max(x, 0), E the wave energy, H the wave height, Hlim the limiting wave
height, Uorb the orbital speed. This functional has therefore been defined in such a way
that it gives a significant indication of the level of beach erosion.
In order to have a realistic estimate, J is computed as the sum of the cost functions
taking into account in pθ the probability that a wave of direction θ arrives.
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J = ∑ pθJθ (0.4)

Once this cost function has been evaluated, a large number of simulations are performed
on the different possible positions of the structure in order to obtain the position corre-
sponding to the minimum J . The results of the optimal configuration are represented on
the following Figures 0.6 and 0.7:

Figure 0.6 – Left: the initial seabed of region D for the cost function calculation; right: the modified seabed with the
optimized protection structure.

Figure 0.7 – The wave height H in the whole domain: (left) for the initial configuration, (right) for the optimized configu-
ration.

The results below clearly show that the protection system attenuates the swell along the
coast. Indeed, a large area behind the structure is found with a very low wave height H.
As mentioned above, the problem is mathematically very well posed, but it is possible
that the solution will be very difficult to implement, that the forcings will change, ...

0.3.2 Optimal Position of Geotextiles Tubes

The work of Isèbe et al. (2008b) can be applied to any types of costal protections struc-
tures. However, these works were mainly focused on geotextiles tubes. This work inspired
Cook et al. (2021b) in his optimization test cases with the new hydro-morphodynamic
modeling approach. The details of this approach will be presented in the section 0.4.2.
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0.3.3 Position of Geotextiles Tubes Structure via OptiMorph

One of the applications of Cook et al. (2021b) compares several geotextiles tubes con-
figurations on a linear beach to find the ideal configuration that limits sand displacement.
The simulation aims to recreate the real conditions of a 20-day storm with a significant
wave height H = 2 m and short period T0 = 2 s. The simulation configuration is as
follows figure 0.8:

Figure 0.8 – Configuration of the geotube simulation.

Several types of J cost functions were then evaluated to limit physical phenomena such
as beach erosion. For example, the results shown in figure 0.9 below:

Figure 0.9 – Final seafloor profiles produced by the Opti-Morph morphodynamic model with variable geotube positions on
the cross-shore profile.

show us that the optimal position of a geotextiles tubes is 351 m with J =
∫

Ω(ψ f −
ψi)dΩ: the sand displacement. Other strategic choices of J cost functions were made in
the article (Cook et al. 2021b). The advantage of this code is that it leaves the user free to
parameterize his own J cost functions, which allows him to obtain optimal configurations
according to his precise criteria: practical, economic,...

38



0.4. Towards a Model of Hydro-Morphodynamism by Optimization

0.4 TTowards a Model of Hydro-Morphodynamism by Opti-
mization

After having carried out numerous works in the optimization of shapes and locations
of coastal protection structures, the works of Mohammadi. B, Bouchette. F and
Azerad. P has taken on a whole new dimension. This new work focused on optimizing
the shape of the sea bottom elevation. The sea bottom elevation acts this time as a
flexible structure and adapts to a certain hydrodynamic quantity. It is from there that
the hydro-morphodynamic models by the principle of minimization are born.

0.4.1 2D Hydro-Morphodynamic Models Based on the Shallow-Water
Equations

The first work on this new way of modeling morphodynamics was done with a very
classical hydrodynamic model, namely the Shallow-Water model, here in 2D (Mohammadi
et al. 2011; Mohammadi et al. 2014).
These two publications focused mainly on theoretical developments of the optimal trans-
port morphodynamic modeling method.

This work has the advantage of directly solving a 2D hydro-morphodynamics. How-
ever, it turns out that the numerical methods used for this model are very heavy. The
method of solving the equations of Shallow-Water is made in finite volumes, the level-set
method is used to locate the structure figure 0.10. To perform the optimization, an auto-
matic differentiation is used (Hascoet et al. 2004). The reason is that this hydrodynamic
model is too complex to be derived analytically. Once these formalisms were established,
functional were tried to account for realistic physics. The following functional of the
equation (0.5) aims to minimize agitation and sandy displacements.

J (ψ) =
∫ t

t−Tcoupl

∫
Ω

(∥∥∇xyu
∥∥+ ρsg(ψ(τ)− ψ(t− Tcoupl))

2
)

dτdΩ (0.5)

with u the velocity, ψ the seabed and Tcoupl indicates a time dependency window (s). It
also permits to introduce a difference in time scales between seabed and flow motions:
it defines the coupling time interval between hydrodynamic and morphodynamic models.
The morphodynamic results obtained with this functional are presented on figure 0.10.
They represent the morphodynamic evolution taking an initial linear sea bottom and a
rigid cylinder.
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Figure 0.10 – Agitation on the left and final seabed on the right (initial seabed: linear)

The morphodynamics seems to be reacted in a very realistic way considering the simula-
tion.
These papers conclude that using this method for morphodynamic problems could be a
local approach similar to other classical Exner models. Moreover, setting up this AD
method is very restrictive, but very robust. It was therefore necessary to go towards a
simpler model with more robust physical criteria. It is therefore appropriate to start with
a 1D model, namely Optimorph.

0.4.2 1D Hydro-Morphodynamic Models Based on Energy Minimization

The new model developed by Cook (2021) is based on the principle that nature seeks
to minimize the energy it expands. This time, the J cost function that governs the
evolution of the seafloor has been developed according to the EH energy of the waves.
This will be presented in the next chapter 1.

0.5 CConclusion

In this state of the art, optimization has been used in a wide range of applications.
On the one hand, optimization of the shape or positioning of structures has been used to
limit the effect of waves on our coasts. These methods work very well, but the solutions
produced are highly dependent on forcing. In addition, the solutions produced are some-
times very difficult to put into practice. On the other hand, optimization has been used
directly in morphodynamic modeling, through work that began in 2011. This latter point
is based on the assumption that nature seeks to minimize the energy it expands, which
we explained more clearly in the introductory part of this thesis. It is therefore on this
point of morphodynamic modelling that this thesis is based.
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Sandy beach dynamics by constrained wave
energy minimization

This chapter focuses on a new approach to describe coastal morphodynamics,
based on optimization theory, and more specifically on the assumption that a
sandy beach profile evolves in order to minimize a wave-related function, the
choice of which depends on what is considered the driving force behind the coastal
morphodynamic processes considered. The numerical model derived from this
theory uses a gradient descent method and allows us to account for physical con-
straints such as sand conservation in wave flume experiments. Hence, the model
automatically adapts to either wave flume or open sea settings and only involves
two hyper-parameters: a sand mobility and a critical angle of repose. The abil-
ity of OptiMorph to model cross-shore beach morphodynamics is illustrated on
a flume configuration. Comparison of the beach profile changes computed with
OptiMorph with experimental data as well as the results from the coastal morpho-
dynamic software XBeach demonstrates the potential of a model by wave energy
minimization. Numerical robustness and a multi-1D extension are also discussed.
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1.1 IIntroduction

Optimization theory is the study of the evolution of a system while searching
systematically for the minimum of a function derived from physical properties of

the system. In this chapter, we have applied this approach to coastal dynamics, with
our primary objective to simulate the interactions between the waves and the sea bottom
along a cross-shore profile. Using mathematical optimization theory (Isèbe et al. 2014;
Isèbe et al. 2008b; Isèbe et al. 2008a; Bouharguane et al. 2010; Mohammadi et al. 2014;
Mohammadi et al. 2011; Cook et al. 2021c; Mohammadi 2017; Bouharguane et al. 2012),
we have designed a model that describes the evolution of the sea bottom while taking into
account the coupling between morphodynamic and hydrodynamic processes. This study
focuses on a theoretical and numerical approach to the modeling of this coupling, based
on the assumption that the beach profile adapts to minimize a certain wave-related func-
tion. The choice of this function determines the driving force behind the morphological
evolution of the beach profile. This optimization problem is subjected to a certain number
of constraints, allowing for a more accurate description of the morphodynamic evolution.
This study is accompanied by the development of a numerical hydro-morphodynamic
model, which has the advantages of being fast, robust, and of low complexity. The model
was given the name OptiMorph.

The chapter starts with a description of the simple hydrodynamic model used to
calculate the driving forces behind the morphodynamic processes. Then, we provide a de-
scription of the morphodynamic model (OptiMorph) based on wave-energy minimization.
With the purpose of validating OptiMorph, we compare the results of the numerical sim-
ulation with that of experimental data acquired in a flume experiment. We also compared
the model to another nearshore hydro-morphodynamic model, XBeach (Roelvink et al.
2009), to see how it fares against existing hydro-morphodynamic models, XBeach being
considered to be quite a reputable model in the coastal dynamic community (Zimmermann
et al. 2012; Bugajny et al. 2013; Williams et al. 2015).
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1.1. Introduction

1.1.1 State of the Art

Numerical models of morphodynamic processes are seen as a valuable tool for under-
standing and predicting the evolution of the sediment transport of the morphology over
time in coastal areas. Different morphodynamic models exist in the literature, ranging
from empirical models (Vriend et al. 1994; Gravens 1997; Kana et al. 1999; Ruessink et al.
2000) to process-based models. The latter can be sorted into several categories, such as
i) profile evolution models (Larson et al. 1989; Larson et al. 1990; Nairn et al. 1993),
which use only cross-shore transport, ii) rules-based models (Storms et al. 2002; McCar-
roll et al. 2021), based on a number of rules such as Brunn’s rule (Bruun 1954), iii) 2D
morphological models (Fleming et al. 1977; Latteux 1980; Coeffe et al. 1982; Yamaguchi
et al. 1985; Watanabe et al. 1986; Maruyama et al. 1988; Wang et al. 1993; Johnson et al.
1995; Nicholson et al. 1997; Roelvink et al. 2009), which use depth-averaged wave and
current equations to model the sediment transport while neglecting the vertical variations
of wave-derived parameters, as well as iv) 3D and quasi-3D models (Roelvink et al. 1994;
Lesser et al. 2004; Roelvink et al. 1995a; Briand et al. 1993; Zyserman et al. 2002; Ding
et al. 2006; Droenen et al. 2007), which determine the sediment evolution using both
horizontal and vertical variations of the wave-derived parameters.

The OptiMorph model described in this chapter is based on optimal control. In the
past, the use of optimization theory has primarily been used in the design of coastal
defense structures, whether in the design of ports and offshore breakwaters (Isèbe et al.
2008b; Isèbe et al. 2008a).

Optimal control has already been considered for the modeling of shallow-water mor-
phodynamics, based on the assumption that the seabed acts as a flexible structure and
adapts to a certain hydrodynamic quantity (Mohammadi et al. 2011; Bouharguane et al.
2010). These studies were based on somewhat theoretical developments with no direct
relationship with real case studies. Our objectives in this work are to produce a physi-
cally robust numerical morphodynamic model based on optimal control and to validate
it using numerical data from well-established morphodynamics software as well as wave
flume experiments.

1.1.2 Hypotheses

OptiMorph is based on a certain number of assumptions. First, since the model is
based on the minimization of a cost function, some hypotheses must be made regarding
the choice of this function. This function, which originates from a physical quantity, must
be directly linked to the elevation of the seabed. In the current version of the model,
we set the quantity to be minimized as the energy of shoaling waves. This implies that
the sea bottom reacts to the state of the waves by minimizing the energy of shoaling
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waves. Other assumptions assess the behavior of the sea bottom and originate from
general observations. In particular, the bed-load sediment transport is controlled by the
orbital displacement of water particles (Soulsby 1987); thus a greater sediment mobility
has to be considered in shallower waters. Another natural observation concerns the slope
of the seabed, which cannot be overly steep without an avalanching process occurring
(Reineck et al. 1973). Last, in an experimental wave flume, the quantity of sand must
remain constant over time, with no inflow or outflow of sand to alter the sand stock.

1.2 NNumerical Model

Modeling Framework

For the sake of simplicity, we present the principle of morphodynamics by optimization
in a one-dimensional setting. This enables us to compare the numerical results based on
this theory with experimental flume data. However, no assumptions are made regarding
the dimension of the problem, and as a result, it is straightforward to extend this theory
to a two-dimensional configuration.

We consider a coordinate system composed of a horizontal axis x and a vertical axis z.
We denote Ω := [0, xmax] the domain of the cross-shore profile of the active coastal zone,
where x = 0 is a fixed point in deep-water where no significant change in bottom elevation
can occur, and xmax is an arbitrary point at the shore beyond the shoreline, as shown
by Figure 1.1. The elevation of the sea bottom is a one-dimensional positive function,
defined by: ψ : Ω× [0, Tf ]×Ψ→ R+ where [0, Tf ] is the duration of the simulation and
Ψ is the set of physical parameters describing the characteristics of the beach profile. In
order to model the evolution over time of ψ and given the assumption that ψ changes
over time in response to the energy of shoaling waves, a description of the surface waves
is needed.
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1.2. Numerical Model

Figure 1.1 – Diagram of a cross-shore profile in the case of an experimental flume.

The model developed by Cook (2021) et al is based on the principle that nature tries to
minimize the energy it spends. This time, the cost function J that governs the evolution
of the ocean floor is a representative quantity of EH, the energy of the waves. The model
is based on the following workflow:

I. Forcing

II. Hydrodynamic 
model

III. Morphodynamic 
model

IV. Additional 
constraints

𝒕
=
𝒕
+

𝒅𝒕

Figure 1.2 – Workflow of Optimorph 2021.

with phase I. of forcing 1.2.1, phase II. of the hydrodynamic model 1.2.2, phase III. of
the morphodynamic model 1.2.3 and the last phase IV. of constraints 1.2.4.
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1.2.1 Model forcing

This hydro-morphodynamic model needs a number of forcing parameters. These very
classical parameters are divided in 4 parts: numerical, geometric, hydrodynamic and
morphodynamic parameters. They are presented in the table below.

Physics Parameters Definition

Numerical parameters
∆x Spatial step [m]

Tcoupl Coupling time between hydro and morpho [s]
T f Simulation time [s]

niter Number of iterations

Domain
Ω Domain size [m]

h0 Offshore water depth [m]

α Slope for a linear bathymetry

Hydrodynamic
H(t) Offshore wave height [m]

T0(t) Wave period [s]
γ Breaking criterion

Morphodynamic
ψ0 Initial Sea bottom elevation
Υ Sediment mobility [m.s.kg-1]

Mslope Maximum slope
Table 1.1 – Table of different forcing parameters

These parameters are very similar to other models. However, there is an original
parameter which is the sediment mobility parameter Υ. This one will be used in the
morphodynamic calculation. It will be defined later.

1.2.2 Hydrodynamic Model

The literature on hydrodynamic models is vast (Murray 2007). However, our main
focus in this work is a) on the morphodynamic part of the approach and b) on providing
evidence of the ability of optimization to perform robust morphodynamic prediction even
under weakly constrained hydrodynamics. So we present the procedures with a hydrody-
namic model as simple as possible, that is based on the linear wave theory (Dean et al.
2004), a very basic shoaling equation and some geometrical breaking parameter. It has
the advantage of being easy to differentiate compared to more sophisticated models that
would need other strong differentiation methods such as automatic differentiation (Has-
coet et al. 2004; Mohammadi et al. 2011) or additional numerical developments, which will
be the subject of the chapter 3. This enables gradient descent minimization, described
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1.2. Numerical Model

in the next subsection 1.2.3. This whole numerical implementation has a significantly
short run-time as shown by the convergence results of the section 1.5.1. This model has
the advantage of expressing wave height as an explicit function of the bottom elevation,
which leads to rapid calculations of the morphodynamics.

Let h (m) be the depth of the water from a mean water level h0 at the point where
waves are generated (cf. Figure 1.1). Ocean waves, here assumed monochromatic, are
characterized by phase velocity C (m s−1), group velocity Cg (m s−1), and wave number
k (m−1), determined by the linear dispersion relation (1.1), where σ is the pulsation of
the waves (s−1) and g is the gravitational acceleration (m s−2):

σ2 = gk tanh(kh). (1.1)

We define ΩS as the time-dependent subset of Ω over which the waves shoal and
ΩB the subset of Ω over which the waves break, cf. Figure 1.1. Munk’s breaking cri-
terion (Munk 1949) enables us to define ΩS(t) =

{
x ∈ Ω, H(x,t)

h(x,t) < γ
}

and ΩB(t) ={
x ∈ Ω, H(x,t)

h(x,t) ≥ γ
}

, where γ is a wave breaking index. We have the model below:

H(x, t) =
{

H0(t)Ks(x, h) for x ∈ ΩS (1.2a)

γh(x, t) for x ∈ ΩB (1.2b)

Simple Shoaling model

where H is the height of the waves over the cross-shore profile, H0(t) is the deep-water
wave height and KS is a shoaling coefficient, given by:

KS =

(
1
2

C0

Cg

) 1
2

, (1.3)

where C0 is the deep-water wave velocity, and:

n =
C
Cg

, C = C0 tanh(kh), Cg =
1
2

C
(

1 +
2kh

sinh(2kh)

)
. (1.4)

These developments have been detailed is the section 2.3. This model gives us this type
of height H for a linear seabed.
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H(x) the wave height [m]
0 the initial sea bottom [m]

Munk criterous activation: H/h <  
SWL

Figure 1.3 – Wave height H(x) with the simple Shoaling model for a configuration with a linear seabed of slopes about 0.11,
wave period T0 = 2 s and offshore wave height of H0 = 2 m.

Instead of considering that waves depend solely on offshore wave height H0, this model
suggests that shoaling waves are decreasingly influenced by seawards waves. The greater
the distance, the less effect it has on the present wave height. As such, we introduce a
weighting function w. Assuming that the maximal distance of local spatial dependency
of a wave is denoted dw, the weighting function over the maximal distance dw is given by
w : [0, dw]→ R+ such that w(0) = 1 , w(dw) = 0 and decreases exponentially.

Equation (1.2a) for shoaling wave height becomes equation (1.5), where Hw
0 is defined

by (1.6).
H(x, t) = Hw

0 (x, t)KS(x, t) (1.5)

Hw
0 (x, t) =

1∫ x
x−X w(x− y)dy

∫ x

x−X
w(x− y)H(y)K(y)dy (1.6)

Equation (1.5) applies only to the shoaling, nearshore-dependent waves of ΩS, signif-
icant wave height over the cross-shore profile H : Ω → R+ is defined by (1.7), where
α(x) =

x
dw

over [0, dw] to allow a smooth transition between offshore and nearshore-

dependent waves.
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1.2. Numerical Model

H(x, t) =



[(1− α(x))H0(t) + α(x)Hw
0 (x, t)]KS(x, t) if x ∈ ΩS and x < dw

Hw
0 (x, t)KS(x, t) if x ∈ ΩS and x ≥ dw

γh(x, t) if x ∈ ΩB
(1.7)

Complexified Shoaling model

This gives us this type of height H for a linear seabed:
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Figure 1.4 – Wave height H(x) with the improved Shoaling model for a configuration with a linear bathymetry of slopes
about 0.11, wave period T0 = 2 s and offshore wave height of H0 = 2 m.

More information on this model can be found in the Cook (2021) user guide.

1.2.3 Morphodynamic Model by Wave Energy Minimization

The evolution of the sea bottom is assumed to be driven by the minimization of a cost
function J (J s m−1). Recalling the hypotheses made in Section 1.1.2, the shape of the
beach profile is determined by the minimization of the potential energy of shoaling waves,
for all t ∈ [0, Tf ]:

J (ψ, t) =
1

16

∫ t

t−Tcoupl

∫
ΩS

ρwgH2(ψ, x, τ)dxdτ (1.8)

where H denotes the height of the waves over the cross-shore profile (m), ρw is water
density (kg m−3), and g is the gravitational acceleration (m s−2). Tcoupl (s) defines the
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coupling time interval between hydrodynamic and morphodynamic models so that we
have Tf /Tcoupl iterations. Other types of cost function have been tested in the appendix
B.

In order to describe the evolution of the beach profile, whose initial state is given by
ψ0, we assume that the sea bottom elevation ψ, in its effort to minimize J , verifies the
following dynamics: {

ψt = Υ Λ d
ψ(t = 0) = ψ0

(1.9)

where ψt is the evolution of the bottom elevation over time (m s−1), Υ is a measure
of the sand mobility expressed in m s kg−1. This parameter is defined on the basis of
flux-based morphodynamic models, as shown in the section 1.2.3.1. It has the same
functionality as XBeach’s morphological factor (Roelvink 2006) where it is possible to
divide simulation times by 18 as performed in (Shafiei et al. 2023; Marchesiello et al.
2022) on the LIP-1B experiment. Λ measures the excitation of the seabed by the orbital
motion of water waves, and d is the direction of the descent (J s m−2), which indicates the
manner in which the sea bottom changes. In unconstrained configurations, there would
be d = −∇ψJ , which by its definition indicates the direction of a local minimum of J
with respect to ψ as illustrated in figure 1.5.

Figure 1.5 – Illustration of gradient descent with ψ ≤ α. The optimum does not necessarily correspond to the critical point
∇ψJ = 0.

The approach involves two parameters with clear physical interpretation: the constraints
defined in section 1.2.4.
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1.2. Numerical Model

Remark: This dynamic described (equation (1.9)), only modifies the bottom elevation
and does not account for lateral displacements. It permits, for instance, the apparition of
sedimentary bars but cannot predict their lateral displacements. This will be discussed
more thoroughly in the discussion from chapter 3, section 3.5.2.

1.2.3.1 Link with Morphodynamic Flux-Based Models and Sediment Characteristics Υ

In this section, we show how to link the bed receptivity coefficient in minimization-
based to the bed porosity in classical flux-based morphodynamic models. The literature
on morphodynamic models is vast (Nielsen 1992; Nielsen 2002; Rooijen et al. 2012; Chen
et al. 2023). Modern numerical implementations rely on models which are in a divergence
form. For instance, the Exner equation (Paola et al. 2005; Yang et al. 1996) describes the
conservation of mass between sediment in the bed of a channel and sediment that is being
transported. It states that bed elevation increases (the bed aggregates) proportionally to
the amount of sediment that drops out of transport, and conversely decreases (the bed
degrades) proportionally to the amount of sediment that becomes entrained by the flow.
The model involves the local porosity of the bed λp(x) ∈ [0, 1[, a function in space x, but
not in time. The model writes:

ψt +
1

1− λp(x)
div (q(x, t)) = 0,

completed with initial and boundary conditions.

In the literature, the expression of q is diverse. But our discussion remains the same
whatever may be the formulation of q. For the sake of simplicity, we consider qx a flux
in one dimension of space. Now, let us write the flux-based model and link it to our
approach presented through the steepest descent formulation for simplicity:

ψt = −
1

1− λp(x)
qx = −Υ(x)Λ(x)∇ψJ (x, t). (1.10)

There is no explicit boundary condition in the minimization model. In this case, we
consider Λ(x) = 1, the maximum disturbance. As we saw, global sand conservation, can
be evaluated through a constraint. In the same way, the local maximum slope is expressed
as a constraint. ∇ψJ (x, t) corresponds to the direction of the descent without constraint
and d with. The bed receptivity Υ(x) is a positive function which we link to the couple
bed porosity λp(x) and flux q as follows.

Locally integrating in space equation (1.10) over a small interval ]x− ε, x + ε[ around x
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we have: ∫ x+ε

x−ε
Υ(s)∇ψJ (s, t)ds =

∫ x+ε

x−ε

1
1− λp(s)

qs(s, t)ds.

Assuming Υ and λp constant over this small interval, which is physically realistic, we
have:

Υ(x)
∫ x+ε

x−ε
∇ψJ (s, t)ds =

1
1− λp(x)

∫ x+ε

x−ε
qs(s, t)ds.

This leads to:

Υ(x)
∫ x+ε

x−ε
∇ψJ (s, t)ds =

1
1− λp(x)

(q(x + ε, t)− q(x− ε, t))

which we write as:
Υ(x) = F(x, t)

1
1− λp(x)

,

where factor F(x, t):

F(x, t) =
q(x + ε, t)− q(x− ε, t)

2ε∇ψJ |(x,t)

represents the ratio between the local flux difference and the local average shape gradient
∇ψJ |(x,t) = (1/(2ε))

∫ x+ε
x−ε ∇ψJ (s, t)ds at point x.

If the bed porosity does not change in time, this evaluation is made only once at
t = 0 and hence, given a flux and a bed porosity, the corresponding minimization-based
procedure can receive an equivalent pointwise initialization (at the first iteration in an
iterative time integration procedure).

In operational conditions however, it is very unlikely to have a pointwise, even inac-
curate, estimation of λp(x). It is more reasonable to look for an ’equivalent’ constant
bed porosity for a given site knowing that what is important in coastal engineering is not
the knowledge of the pointwise bed porosity, but the prediction of beach future behaviour
based on this site macroscopic characteristics. Also, in homogeneous bed, as it is often
the case in sandy beaches, λp(x) is a constant. We therefore look for a constant bed
receptivity Υ = F 1

1−λp
over the domain of interest ]xL, xR[ (L, R indicating Left and

Right) given constant bed porosity λp and flux q with

F =
q(xR, 0)− q(xL, 0)∫ xR

xL
∇ψJ (s, 0)ds

, (1.11)

which is a scalar, and the ratio between flux variation over ]xL, xR[ and the average of
local shape gradients. Here we have defined xL and xR as the Left and Right extremities
of the domain. So we have q(xR, 0) and q(xL, 0) the boundary conditions of the flux-based
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model. F is a measure of how the evaluation of local-based and optimization-based fluxes
differs.

1.2.3.1.1 Illustration Using a Simple Model

Assuming that we are on a configuration of bed load transportation without suspended
transport, we can calculate q(xR, 0) and q(xL, 0) by using a formula of the bed load
transport rate q with (Fredsøe et al. 1992):

q = 10
π

6
d50pU′f [1− 0.7

√
θc/θ′] (1.12)

with d50 the grain diameter, p the fraction of bed surface particles in motion, U′f the
skin friction velocity, θc the critical Shields parameter and θ′ the Shields parameter. This
formula has been chosen as one of the simplest. However, we can choose to take suspended
sediment transport into account, simply by changing the expression of q in our model.
Combining the equations (1.11) and (1.12), we obtain the following expression of F:

F = πd50[10− 7
√

θc/θ′]
p(xL)U f ′(xL)− p(xR)U f ′(xR)

6
∫ xR

xL
∇ψJ (s, 0)ds

.

We have shown how a conjunct giving of a bed porosity and a flux permits the initial-
ization of a minimization model according to the parameters of the chosen local flux-based
model which is comforting for users familiar with such a more traditional approach. How-
ever, a same initialization does not mean that the two models will follow the same path,
as the minimization-based approach introduces more physics. Indeed, in previous works,
we have already shown how our minimization-based formulation can be seen as an Exner
equation with a non-local flux (Mohammadi et al. 2011; Bouharguane et al. 2012) with
terms similar to those encountered in Fowler-like models (Fowler 2001; Kouakou et al.
2006). Those terms bring the contribution of some non-local physics to the morphody-
namics.

This formulation also permits the comparison of the bed ψ evolution predicted min-
imizing different physical functional J . It is thus a very efficient exploratory model as
defined by Murray (2007). However, it is not possible to find the functional J associ-
ated to a given flux q because this requires the mathematical concept of integration with
respect to the shape to give sense to:

J =
Υ

1− λp

∫
ψ
∇.q dψ.

Unfortunately, unlike differentiation with respect to the shape (Mohammadi et al. 2009),
the concept of integration with respect to the shape does not exist as of today.
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1.2.4 Model Constraints

The first constraint Υ takes into account the physical characteristics of the sand and
represents the mobility of the sediment. Simulations with varying Υ that reflect variations
of the d50 grain diameter from 0.25 mm to 2 mm were performed. Changes in the beach
profile were observed but no significant alteration of the trends in beach profile evolution
through time. The asymptotic behavior of the simulations remains the same although the
velocity at which a given profile is reached changes. Further explanation of the nature
of the Υ parameter will be given at a later stage of the model development. The second
parameter Λ is a local function which represents the influence of the relative water depth
kh on the beach profile dynamics and is defined after the term describing the vertical
attenuation of the velocity potential according to linear wave theory (Soulsby 1987):

φ : Ω× [0, h0] −→ R+

(x, z) 7−→ cosh(k(x)(h(x)− (h0 − z)))
cosh(k(x)h(x))

.

(1.13)

In unconstrained circumstances, for instance, if a total sand volume constraint does
not need to be enforced, we set d = −∇ψJ , which indicates a direction for local mini-
mization of J with regards to ψ. The calculation of ∇ψJ is described in 3.2. However,
constraints are added to the model to incorporate more physics and to deliver more realis-
tic results. While driving forces behind the morphological evolution of the beach profile are
described by the minimization of the cost function J , secondary processes are expressed
by constraints. In the interest of simplicity, we have adopted two physical constraints
though more can be introduced if necessary. The first concerns the local slope of the
bottom. Depending on the composition of the sediment, the bottom slope is bounded by
a grain-dependent threshold Mslope (Dean et al. 2004). This is conveyed by the following
constraint on the local bottom slope illustrated by 1.6:∣∣∣∣∂ψ

∂x

∣∣∣∣ ≤ Mslope. (1.14)

The dimensionless parameter Mslope represents the critical angle of repose of the sediment.
This angle is based on observed angles in natural beach environments, which are often
between 0.01 and 0.2 (Bascom 1951; Vos et al. 2020; Short 1996). We have considered
the observed critical angle of 0.2.

A second example concerns the sand stock in the case of an experimental flume. In
a flume, the quantity of sand must be constant over time, as given by (1.15), contrarily
to an open-sea configuration where sand can be transported between the nearshore zone
and a domain beyond the closure water depth where sediment is definitely lost for beach
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morphodynamics (Hattori et al. 1980; Quick 1991). This constraint can be written as :∫
Ω

ψ(t, x)dx =
∫

Ω
ψ0(x)dx ∀t ∈ [0, Tf ]. (1.15)

This constraint is necessary for verifying and validating the numerical model with the
wave flume experimental data.

Figure 1.6 – Slope constraint (1.14) from (Cook 2021). Figure 1.7 – Sand conservation (1.15) from (Cook 2021).

1.3 NNumerical Application

In this section, we present the numerical results produced by the OptiMorph model.
For validation purposes, the resulting beach profile is compared to experimental data
acquired during a flume experiment. We also conduct a comparative analysis between
the beach profiles produced experimentally, by OptiMorph and by XBeach, with the aim
of assessing how OptiMorph holds up against existing hydro-morphodynamic models. A
brief description of the experiment is provided, as well the as the XBeach model.

1.3.1 Description of the Experiment

The experimental observations have been collected as part of the COPTER project and
a series of laboratory wave-flume experiments were performed in order to investigate the
morphodynamic impact of introducing solid geotextile tubes in the nearshore (Bouchette
2017). We use the part of the experiment run without tubes that was devoted to the
description of the natural evolution of the beach profile under various wave conditions.
Time and length scale ratios are set to 1/3 and 1/10 respectively to that of the field. For
limiting the costs, natural sediment (fine sand of density 2.65 and median diameter d50

= 0.166mm) has been used in the present experiments. This choice leads to full a Rouse
scaling for a prototype grain size of d50 ≈ 0.3 mm.

A flume measuring 36 m long, 0.55 m wide and 1.3 m deep is equipped with a wave-
maker and gauges measuring the elevation of the water surface from which wave properties
are derived. Artificial particles are placed inside the flume representing the mobile sea
bottom and an ultrasonic gauge is used to measure the experimental beach profile. The
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experimental beach profile, described in Figure 1.1 is subjected to a series of 30-minute
storm climates, among which a typical moderate storm event (at the scale of the flume)
with a significant wave height and period of Hs = 135 mm and Ts = 2.5 s.

1.3.2 XBeach Model

XBeach is an open-source process-based model developed by Deltares, UNESCO-IHE,
and Delft University of Technology to simulate the hydro-morphodynamic processes in
coastal areas (Roelvink et al. 2009; Zimmermann et al. 2012; Bugajny et al. 2013; Williams
et al. 2015). In brief, XBeach uses four interconnected modules to model near-shore pro-
cesses (Daly 2009; Roelvink et al. 2010). The two hydrodynamic modules consist of
the short-wave module and the flow module. The first is based on wave action equa-
tions (Holthuijsen et al. 1989), and incorporates breaking, dissipation (Roelvink 1993),
and wave current interactions, while the latter is governed by shallow-water equations
(Andrews et al. 1978; Walstra et al. 2000). One of the two morphodynamic modules is
the sediment transport module based on the equilibrium sediment concentration equa-
tion (Soulsby 1997) and a depth-averaged advection-diffusion equation (Galappatti et al.
1985). The other is the morphology module which concerns seabed transformations such
as the evolution of the sea bottom and avalanching.

For the simulations, the domain Ω is defined over 32 m with a uniform subdivision of
320 cells. The incoming wave boundary condition is provided using a JONSWAP wave
spectrum (Daly 2009), with a significant wave height of Hm0 = 0.015 m and a peak
frequency at fp = 0.4 s−1. The breaker model uses the Roelvink formulation (Roelvink
1993), with a breaker coefficient of γ = 0.4, a power n = 15, and a wave dissipation
coefficient of 0.5. These parameters were calibrated using the hydrodynamic data pro-
duced during the physical flume experiment. Concerning sediment parameters, the d50

coefficient is set as 0.0006, and the porosity is 2650 kg m−3. No other parameters such
as bed friction or vegetation were applied. The model is set to run for a period of 1800 s,
as a short-term simulation.

1.3.3 Hydrodynamic Validation

This section is devoted to the comparison of the two numerical hydrodynamic models
to the experimental wave data obtained in the experimental flume of section 1.3.1. Mean
wave height profiles were calculated over the short-term storm simulation, for both Opti-
Morph and XBeach, and compared to the mean wave height of the experimental model.
The latter was calculated using the measures taken by the gauges of the flume.
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Figure 1.8 – Comparison of mean wave height over a storm simulation. The green points correspond to the mean wave
height provided by the gauges of the flume experiment. The mean wave height determined by OptiMorph (red) and XBeach
(blue) also appears. The non-zero wave height beyond the shoreline as presented by XBeach is due to wave set-up, which
OptiMorph does not handle.

Figure 1.8 shows that the hydrodynamic module of both OptiMorph (red) and XBeach
(blue) are both comparable with respect to the experimental measurements (green) ex-
cluding, as is often the case, the second point at x = 6 m. XBeach demonstrates a close
qualitative fit over the 10-22 m section of the flume, whereas OptiMorph excels at the
coast (21-27 m), with a near-perfect fit with the experimental data. OptiMorph stops at
x = 28 m when the still water level reaches the seabed, whereas the XBeach model can
calculate beyond this point, so differences are observed in the breaking zone. Despite the
simplicity of the hydrodynamic model used by OptiMorph, the resulting wave height is of
the same order of magnitude over the cross-shore profile than that measured during the
flume experiment, which indicates that the resulting beach profile would be comparable
with regard to the forcing energy driving the morphodynamic response.

1.3.4 Numerical Results of the Morphodynamic Simulations

The OptiMorph model was applied to the configuration of the COPTER experiment
of section 1.3.1, and the resulting beach profile is shown by the red profile, in Figure
1.9.A. The main observation is the decrease of 2.5 cm in height of the sandbar, at x = 9
m. We observe a slight lowering of the sea bottom adjacent to the wave-maker, and a
slight increase at the plateau, situated at 15-25 m. No mobility is observed at the coast.
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Figure 1.9 – A. Results of the numerical simulation calculated over the initial seabed (gray) using the XBeach morphody-
namic module (blue) and the OptiMorph model (red). These are compared with the experimental data acquired during the
COPTER project (green). The mean water level is denoted MWL and is set at 0.56 m. B. Zoomed in view of the sandbar,
located between 6 m and 16 m. C. Zoomed in view of the plateau, located between 16 m and 24 m. D. Zoomed in view at
the shoreline, located between 24 m and 32 m. E. Robustness analysis of the mobility parameter Υ. The reference profile is
depicted in black. The orange (resp. light blue) profile is the result of a 50% increase (resp. decrease) in mobility, with all
other parameters remaining the same. F. Robustness analysis of the maximal sand slope parameter Mslope. The reference
profile is depicted in black. The orange (resp. light blue) profile is the result of a 50% increase (resp. decrease) of Mslope ,
with all other parameters remaining the same.

When comparing the results provided by OptiMorph (red), with that of XBeach (blue)
and the experimental data (green), as shown on Figure 1.9.A, we observe that the red
beach profile provided by the OptiMorph model shows a general quantitative agreement
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when compared to the experimental data, as does the XBeach morphological module. In
fact, both models produce profiles close to the experimental data over the plateau located
at 15-25 m from the wave-maker (Fig. 1.9.C). But in this area, XBeach is better, while
OptiMorph is rather limited on the plateaux because it doesn’t induce a wave breaking
and therefore no ∇ψJ gradient. At the shore, OptiMorph matches the experimental
data whereas XBeach shows a vertically difference of up to 3 cm at x = 27 m (Fig.
1.9.D). Discrepancies on the part of both models occur in the area surrounding the tip
of the sandbar, as both OptiMorph and XBeach fail to predict the shoreward shift of the
sandbar (Fig. 1.9.B); the experimental data shows that the height of the sandbar remains
unchanged with regards to the initial profile. Both sandbars have a height of 0.375 m;
however, the sandbar resulting from the experimental simulation has moved towards the
coast, an occurrence that neither numerical model was able to predict, which is a common
problem with morphological change models.

As such, this new model based on wave-energy minimization shows potential when
compared to XBeach, in the case of short-term simulations.

1.4 EExtension to a Multi-1D model

The OptiMorph multi-1D model (Dupont et al. 2022) is an extension of 1D. It slices
a 3D bathymetry into n cross-shore transects. They are then launched simultaneously
as shown in figure 1.10. They can be run on a classical computer or on a cluster for
computation time.
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Figure 1.10 – Functional diagram of the multi-1D.

Once the n simulations are done, it is essential to link all these simulations by interpo-
lation. This model, the most basic one, has some limitations. Indeed, these simulations
assume that all transects have been extracted at locations where there are no long-shore
currents. In addition, lateral sandy displacements are not taken into account. Also, it
is not possible to take into account the change in wave direction, which is important for
significant storm events. In a more advanced version, it could be interesting to take into
account these phenomena by adding a source term in the descent equation governing the
evolution of ψ. A fully 2D approach would automatically take this longshore transport
into account, and could handle different wave directions, as described in chapter 4.

1.4.1 Applications to a Multi-1D Case Near Montpellier.

The works of Isèbe et al. (2008b) and Bouharguane et al. (2010) are interested in
finding the optimal position of geotextile tubes (protection solutions) on a transverse
profile to maximize their effect as a wave attenuator. With this type of approach in mind,
we wish to perform a set of multi-1D simulations by placing a geotextile tube on a set of
real transverse morphological profiles (Montpellier; Figure 1.11) structure.
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Figure 1.11 – Geography of the simulation near Montpellier.

We carry out the simulation of an extreme multi-1D case (on all the profiles); this
simulation corresponds to a storm of a few days with waves of a maximum height of
Hmax = 2 m. A geotextile tube is added on the domain in a Gaussian form (whose
characteristics vary from one profile to another; figure 1.12.a. Parallelized simulations
(HPC computer) are launched and are completed in less than 5 minutes whatever the
number of transects (modulo the limit of cores on the cluster). The results are presented
in figure 1.12.

Figure 1.12 – a) Initial sea bottom near Montpellier with the addition of a Gaussian geotube with a maximum height of
3m. b) Final bathymetry after a simulation of a storm of several days.

The results show the formation of a pit at the back of the highest and thickest part
of the geotextile tube. These results are encouraging as they are very similar to those
found in the COPTER experimental campaign (Bouchette 2017) conducted in 2017 in a
3D wave basin (moving bottom).

1.5 DDiscussion
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1.5.1 Robustness Analysis of the Consistency in Time and Space of the
Morphodynamic Model

We computed a reference OptiMorph simulation using a very small coupling time of
0.05 s which is much smaller than what is usually used in hydro-morphodynamic simula-
tions. The simulation was performed with the original bathymetric profile of the COPTER
experiment and the forcing of the wave maker.

This simulation provides a reference computed sea bed ψre f (Tf , x) at some given time
Tf . We would like to see the convergence toward this reference solution of various other
OptiMorph simulations with different decreasing time steps. From this series of simu-
lations, we quantify a residual error with L2 norms as EL2 =||ψre f − ψ||L2 in m. We
performed 10 simulations with time steps ranging in [0.05; 160] s and we get the results
described in figure 1.13.a).

Figure 1.13 – a) Errors EL2 (green) obtained by simulations of 10 different time steps compared to the reference simulation
corresponding to a coupling time of 0.05 s. First order convergence (yellow). b) Errors EL2 (red) obtained by simulations
of 10 different spatial steps compared to the reference simulation corresponding to a spatial step of 0.0002 m. First order
convergence (yellow).

In order to analyse the convergences in space and time, we choose, respectively, a reference
coupling time of Tcoupl = 3 s and a spatial step size ∆x = 1 m. Tcoupl = 3 s corresponds
to the kind of time steps we would like to use in simulations. But, we will use larger
spatial resolution in practice. The results in figure 1.13 shows first order (illustrated by
the continuous line) convergence rates in both time and space.

To understand why a coupling time of 3 seconds is interesting for computing efficiency,
it is useful to look at the CFL stability condition analysis for the Shallow-Water model
(Marche et al. 2007). The analysis provides a typical upper bound for the time step of
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the form:

∆t = min i

(
∆x

2 maxi(|ui ±
√

ghi|)

)
=

∆x
2 maxi(|u0 ±

√
gh0|)

,

where subscript i indicates the mesh node which means that the minimum is taken over all
the nodes of the mesh. In our situation, it corresponds to the off-shore position (subscript
i = 0). Typical values in our simulation are: u0 = 10 m s−1, ∆x = 1 m, h = 0.55 m
and g = 9.81 m s−2. This gives us ∆t = 0.04 s, which is about two orders of magnitude
smaller than our reference time step of ∆t = 3 s. In addition, the costs of one iteration
of the Shallow-Water and OptiMorph models are comparable.

1.5.2 The Robustness of the Domain Length

An important step in the analysis of the numerical behavior of the model is the valida-
tion of its behavior with respect to the characteristics of the domain and with respect to
the forcing. In this part, we are particularly interested in the comparison of simulations
of the morphodynamic evolution for identical forcing but different domains. A multi-day
storm is studied by varying the length of the domain while keeping the same linear range
of slope 1e-2. The results obtained are presented in Figure 1.14.b and show the formation
of a realistic stable bar for domain lengths in the interval [600, 1200, 1800, 3000] m.

Figure 1.14 – a) Different final bottom profiles for domains of sizes [600, 1200, 1800, 3000] m corresponding to offshore wave
heights of h= [7, 14, 21, 35] m. The representation is truncated at 7 m depth. b) L2 error comparing each simulation to
the reference solution corresponding to the 3000 m domain (the longest, represents deep-water conditions).

Figure 1.14.b shows the convergence of the solution as a function of the change in
domain length. As for the convergence on spatial resolution, we consider a reference
simulation which is that of a domain of length 3000 m. The observed convergence thus
ensures that regardless of the domain size, the shallow-water swell transition always occurs
at the same point and the morphodynamic response occurs in the same way.
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1.5.3 Parameter Robustness Analysis

One of the advantages of the OptiMorph model is the low number of morphody-
namic hyper-parameters required. At the present time, OptiMorph requires two hyper-
parameters: the mobility parameter Υ and the maximal slope parameter Mslope. Here,
an assessment on these parameters is conducted. In Figure 1.9.E, three simulations were
performed in identical settings with changes made solely to the mobility parameter. Ini-
tially, this parameter Υ has a value of 5× 10−6 m s kg−1. Figure 1.9.E shows no signif-
icant difference despite a 50% increase (Υ = 7.5× 10−6 m s kg−1) (orange) or decrease
(Υ = 2.5× 10−6 m s kg−1) (light blue) of Υ with regard to the baseline beach profile
(black). A similar conclusion can be deduced for the maximal slope parameter Mslope,
whose reference value here is 0.2. The corresponding parameter of XBeach is wetslp,
described in the XBeach manual as the critical avalanching slope under water, and is
also set to 0.2. In Figure 1.9.F, we observe little difference between the reference seabed
(black), the seabed resulting from a 50% increase (Mslope = 0.3) (orange) and the seabed
resulting from a 50% decrease (Mslope = 0.1) (light blue). The only apparent discrepancy
can be found at x = 28 m, where the bottom slope is at its steepest, and therefore the
sand slope constraint is more prone to be active. The reduction of the critical angle of
repose results naturally in a less steep slope. The robustness of OptiMorph in relation
to both the mobility parameter and the slope parameter, despite a significant increase
or decrease of their value, is apparent. Further simulations show that the robustness of
these parameters is not specific to this particular flume configuration, but can be observed
regardless of the initial configuration.

1.5.4 Mid-term Simulations

This section is devoted to a medium-term behavior of OptiMorph, the main question
being, is this numerical model capable of creating an equilibrium state after being sub-
jected to a great number of repeated events. Five forcing scenarios, lasting either 2 or 6
days, were applied to the same initial seabed in the same parametric configuration. The
current OptiMorph code is in Python. Typically, using time steps of 1 s simulating a
day of forcing requires about 1.5 hours on a 2GHz PC computer. Each time iteration
gathering the steps presented in this chapter requires therefore about 63 ms. Regarding
the section 1.5.1, we could use 3 s time step and divide the simulation time by 3. An
analysis of the resulting beach profiles is performed as well as their behavior throughout
the simulation. The latter is achieved through a comparative study of four-time series,
focusing on: (1), the vertical evolution of bottom elevation at the tip of the sandbar;
(2), the vertical evolution of bottom elevation at a point of the plateau; (3), the distance
between the wave-maker and the onset of the sea bottom; and (4), the location of the
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shoreline position.
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Figure 1.15 – Mid-term simulation of OptiMorph. A. Forcing wave height for scenario 1, composed of several mid-term
events over a 2-day period. B. Forcing wave height for scenario 2, composed of numerous short-term events over a 2-day
period. C. Forcing wave height for scenario 3, composed of several mid-term events over a 6-day period. D. Forcing wave
height for scenario 4, composed of numerous short-term events over a 6-day period. E. Forcing wave height for scenario 5,
composed of few mid-term events over a 6-day period. F. Seabeds resulting from the different forcing scenarios produced by
OptiMorph. Two points of interest have be identified: P1 located at x = 9.3 m and P2 located at x = 20.1 m. G. Evolution
of the distance, devoid of sediment, between the wave-maker (located at x = 0 m) and the seabed (WM-S), regarding forcing
scenarios 3, 4, and 5. H. Vertical evolution of seabed elevation at P1, driven by the 6-day forcing scenarios 3, 4, and 5. I.
Vertical evolution of seabed elevation at P2, driven by the 6-day forcing scenarios 3, 4, and 5. J. Evolution of shoreline
position, driven by the 6-day forcing scenarios 3, 4, and 5.

Applying OptiMorph over a longer time-series leads to the results of Figure 1.15. The
two 2-day forcing scenarios are shown in Figures 1.15.A and 1.15.B. In both cases, we
observe that the resulting beach profiles in Figure 1.15.F are subjected to the destruction
of the sandbar and have a tendency to evolve progressively towards an equilibrium beach
profile (Engineers 2002). Simulations over a 6-day period were conducted to confirm
this tendency. These scenarios are depicted in Figures 1.15.C, 1.15.D, and 1.15.E; the
resulting profiles given in Figure 1.15.F show once again the destruction of the sandbar,
the elevation of the plateau, and some erosion at the shoreline. Furthermore, all three tend
towards an equilibrium state. This is confirmed by the four time-series analysis presented
in Figures 1.15.G, 1.15.H, 1.15.I, and 1.15.J. The vertical elevation of the seabed at both
points P1 and P2 show initial variations over the first 2 days: a decrease in the case of P1
(cf. Figure 1.15.H) and an increase in the case of P2 (cf. Figure 1.15.I). However, both
studies show a stabilization of the sea bottom elevation over the last 4 days of the 6-day
period. Similar conclusions can be drawn regarding the length of the zone containing no
sediment adjacent to the wave-maker (cf. Figure 1.15.G). An initial increase between 2 and
3 meters can be observed, with stability achieved in the later stages of the simulations.
Finally, Figure 1.15.J shows the evolution of the shoreline position. Initially found at
x = 28.3 m, all scenarios provoke a retreat of the shoreline: 0.4 m in scenario 3, 0.3 m
in scenario 4, and 2 m in scenario 5. The shorelines of the latter two converge, whereas
scenario 3 shows an abrupt advance of the shoreline at day 5, with an attempt to return
back to its stable state of x = 30 m. The seabed has been flattened, the sandbar has been
destroyed and erosion can be observed at the coast (Grasso et al. 2011). This tendency
to evolve towards an equilibrium state (Dean et al. 2004) is consistent with the choice of
morphogenic and constant storm-like forcing conditions.

The comparisons made between the two 2-day simulations and the three 6-day sim-
ulations, in this quite limited configuration, also reveal the little influence heritage has
on the morphodynamic response. Both scenarios 1 and 2 have a comparable cumulative
incoming wave energy density EH = 1

16

∫ T
0 ρgH2

0dt of 0.0591 J m−2. The resulting beach
profiles evolve towards similar profiles (reduction of the sandbar, increase of elevation of
the plateau, and erosion at the coast), despite two different forcing conditions. Similar
conclusions can be drawn regarding the 6-day simulations, where the cumulative energy
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density of all three is equal to 0.177 J m−2.

1.6 CConclusions

OptiMorph shows potential as a fast, robust, and low complexity morphodynamic
model involving only two hyper-parameters. Despite using a basic hydrodynamic model
for the description of the complex coupling of hydrodynamic and morphodynamic pro-
cesses, we can nevertheless observe that a numerical model based on an optimization the-
ory works effectively, with comparable results to a state of the art hydro-morphodynamic
model requiring the tuning of dozens of hyper-parameters. Mid-term simulations also
show typical morphodynamic behavior, with the tendency of the seabed to evolve towards
an equilibrium state. Moreover, the results of the multi-1D code are very encouraging.
These results demonstrate the tremendous potential of OptiMorph, a constrained energy
minimization morphodynamic model.

• A fast, robust, low-complexity morphodynamic model based on the minimization
principle.

• Valid comparisons with well-known morphodynamic software such as XBeach.

• Results showing a long-term equilibrium solution.

• A numerical validation has been done (time, space and domain length consistency).

• An extension to Multi-1D has been tested on a case off Montpellier.

• A strong constraint in the choice of the hydrodynamic model which must be ana-
lytically differentiated.

Chapter key points
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Hydrodynamic models
In the last chapter, we developed the OptiMorph model. In this version, the
code only works with a local hydrodynamic model (shaoling). This hydrodynamic
model has its limitations. In this chapter, we review the literature on existing
hydrodynamic models. Next, we look at several types of hydrodynamic model, with
a view to incorporating them into our OptiMorph code. These models are XBeach,
SWAN, REF/DIF and Shallow-Water. Another model based on the shoaling
criterion is developed, and these models are tested on well-known configurations,
namely LIP-1C and open-sea simulations.
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Chapter 2 – Hydrodynamic models

2.1 IIntroduction

Coastal hydrodynamics is an important field of research, as it has major im-
plications for coastal engineering, oceanography, and marine ecology. In order to

accurately simulate the complex physical processes that occur in coastal waters, numerical
models have become increasingly important.

The governing equations that best represent the coastal hydrodynamic processes are
the Navier-Stokes equations, which describe the conservation of momentum in a fluid.
These equations can be used to model the flow of water in coastal regions, including
wave propagation, sediment transport, and water circulation. In addition, the equations
can be used to calculate the forces acting on the water, such as the Coriolis force and
the drag force. However, these equations are far too complex and are therefore rarely
used as they stand.. Some rather heavy models like CROCO (Marchesiello et al. 2021)
use the Reynolds-averaged Navier–Stokes equations (RANS) but most of the models are
derivatives of the Navier-Stokes equations like the well-known Shallow-Water equation.

The first hydrodynamic models were based on linear wave theory (Dean et al. 2004). It
is a concept that describes waves thanks to certain quantities: the dispersion, the group
velocity and the wave action conservation. It has the advantage of giving an explicit
general solution.

Nowadays, we have two major analyses: wave-wave analysis and spectral analysis.
Wave-wave analysis is particularly adapted for studies focusing on phenomena linked to
celerity thresholds or surface-curve like the wave breaking. In the opposite, the spectral
approach is more adapted for wave forecasting. We will focus mainly on those with
spectral resolution that allows us to obtain directly an averaged wave height H name Hs

or H1/3. On a larger scale, we find oceanographic ocean modelling models that solve
the primitive ocean equations with models like NEMO (Breivik et al. 2015) or ROMS
(Shchepetkin et al. 2005).

The aim of this chapter is to highlight various hydrodynamic models so that they
can be exported to the morphodynamic model in chapter 3. The models to be tested
in this chapter are XBeach (Roelvink et al. 2009), SWAN (Booij et al. 1996), REF/DIF
(Kirby et al. 1994), Shallow-Water (Marche et al. 2007) and a new model based on the
shoaling criterion. This is a new comparison, but we can find a few studies on the subject
(Gracia et al. 2013; Mohapatra et al. 2018). The chapter begins with an overview of the
physic of waves and a discussion of what type of model can be a relevant choice for our
morphodynamic model. These hydrodynamic models must produce a significant height
Hs as output. They can be temporal or spectral. In order to verify their validity, we will
test them on a known benchmark, namely LIP11D (Table S.6) (Roelvink et al. 1995b).
We will also perform simulations on open sea configurations on linear, convex and concave
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seabed. These will also be performed in the next chapter 3 on morphodynamic aspects.

2.2 PPhysics of Wave Motion

This section introduces the mathematical background of wave fluid motion analysis.
With the figure below,

g

L/2

z

h

MWL

H
η

Figure 2.1 – Diagram of the linear theory.

The variation of surface elevation with time, from the still water level, is denoted by η

and given by:

η(x, t) =
H
2

cos
(

x
L
− t

T0

)
(2.1)

with the hydrodynamic notations as follows:

• H the wave height (m),

• T0 the wave period (s),

• L the wave length (m),

• θ the direction (rad),

• k = 2π/L the wavenumber (m−1),

• a the wave amplitude, a = H/2 (m),

• ka the wave slope (1),

• h the water depth (m),

• η̄ the mean free surface level (m),
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• D = h + η̄ the local water depth (m).

We then introduce the Eulerian notations with the position with the horizontal vector
having two components x = (x, y) and the vertical position z. Celerities are their respec-
tive temporal derivatives denoted u = (u, v) and w.

The equation that perfectly governs the motion of water and therefore of a wave is the
Navier-Stockes equation:

∂u
∂t

+ u · ∇u + w
∂u
∂z

= − 1
ρw
∇p + ν

(
∇2u +

∂2u
∂z2

)
, (2.2a)

∂w
∂t

+ u · ∇w + w
∂w
∂z

= −g− 1
ρw

∂p
∂z

+ ν

(
∇2w +

∂2w
∂z2

)
, (2.2b)

∇ · u +
∂w
∂z

= 0, (2.2c)

with ρw the water density, ∇ the horizontal gradient, ν the viscosity, g the gravity con-
stant, p the pressure, u = (u, w) is a velocity vector of x and y components. The equation
(2.2a), (2.2b) are the momentum equations and the equation (2.2c) is the continuity equa-
tion. We could simplify these equations using some assumptions:

• The pressure is uniform =⇒ − 1
ρw
∇p = 0 and ∂p

∂z = 0,

• The density is constant =⇒ ρw = cte,

• The bottom is horizontal =⇒ ∂
∂x = cte,

• The fluid is incompressible =⇒ ∇ · v = 0,

• The fluid is non-viscous =⇒ ν = 0,

• The fluid is irrotational =⇒ u = ∇ϕ and w = ∂ϕ
∂z .

By neglecting the viscosity, we obtain the Euler (1752) equations:

∂u
∂t

+ u · ∇u + w
∂u
∂z

= − 1
ρw
∇p, (2.3a)

∂w
∂t

+ u · ∇w + w
∂w
∂z

= −g− 1
ρw

∂p
∂z

, (2.3b)

∇ · u +
∂w
∂z

= 0, (2.3c)
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that can be express in vectorial form:

∂V⃗
∂t

+
(

V⃗ · ∇
)

V⃗ = − 1
ρw
∇P− g⃗k (2.4)

with V⃗ = (u, v, w) and P the vector of each pressure component in (x, y, z) and k⃗ =

(0, 0, 1). Using vector calculus, we have:

∇(V⃗ · V⃗) = 2V⃗ · XXXXX(∇⃗ · V⃗)︸ ︷︷ ︸
incompressible

+2(V⃗ · ∇)V⃗,

(V⃗ · ∇)V⃗ =
1
2
∇(V⃗ · V⃗),

and then, replacing the potential V⃗ = ∇ϕ′, Euler (1752) equation becomes:

∂∇ϕ′

∂t
+

1
2
∇
(
∇ϕ′ · ∇ϕ′

)
= − 1

ρw
∇P− g⃗k, (2.5)

however, we have: ∇(gz) = g⃗k, then:

∇
(

∂ϕ′

∂t
+

1
2
(
∇ϕ′ · ∇ϕ′

))
= −∇

(
P

ρw
− gz

)
, (2.6)

by integrating, making a change of variable between ϕ′ and ϕ, we obtain the classical
Bernouilli energy equation:

∂ϕ

∂t
+

1
2

[
|∇ϕ|2 +

(
∂ϕ2

∂z

)]
+

p
ρw

+ gη = C(t), z = η (2.7)

with C(t) a function depending on time which will be considered as null. Making the
assumptions that H ≪ L and H ≪ h results in the linearized boundary conditions (in
which the smaller, higher order and product terms are neglected). The resulting kinematic
and dynamic boundary equations are then applied at the still water level, given by,

w =
∂η

∂t
, gη +

∂ϕ

∂t
, z = 0. (2.8)

The resulting solution for ϕ is given by:

ϕ = −g
∫

η(t)dt (2.9)
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which gives us with the equation of η (2.22a):

ϕ = −gH
T0

4π

cosh
[( 2π

L
)
(h + z)

]
cosh

[( 2π
L
)

h
] sin

(
2πx

L
− 2πt

T0

)
. (2.10)

We can state that the condition of continuous surface celerities is

w =
∂ϕ

∂z
= u · ∇η +

∂η

∂t
= ∇ϕ · ∇η +

∂η

∂t
, for z = η (2.11)

and that (2.2c) becomes equivalent to the Laplace equation for ϕ :

∇ · u +
∂w
∂z

= ∇2ϕ +
∂2ϕ

∂z2 = 0, for − h ≤ z ≤ η (2.12)

and for a horizontal bottom the equation of continuous vertical velocity is

w =
∂ϕ

∂z
= 0, for z = −h. (2.13)

Additionally, after a few manipulations on (2.3a) and (2.3b) we obtain the beginning of a
wave equation:

∂2ϕ

∂t2 + g
∂ϕ

∂z
= g∇ϕ ·∇η− 1

2
∂η

∂t
∂2ϕ

∂z∂t
−
(

∂

∂t
+

∂η

∂t
∂

∂z

) [
∇ϕ · ∇ϕ +

(
∂ϕ2

∂z

)]
+C(t), for z = η

(2.14)

2.3 LLinear Wave Theory

The notion of uniform motion (linear motion of a wave) must respect certain assump-
tions: the wave slope is small (ka ≪ 1), the quantity a/D is small too: (a/D ≪ 1).
These are small-amplitude waves.

Regarding the small-amplitude wave assumptions: (ka ≪ 1) and (a/D ≪ 1). We
know that it has been proved that the non-linear term of equation (2.14) can be ignored
and that from a first order Taylor development to get equation (2.14) for z = 0 instead
of z = η, the linearized wave equation is now:

∂2ϕ

∂t2 + g
∂ϕ

∂z
= 0 , for z = 0. (2.15)

From a Fourier decomposition, then replacing the solution into the Laplace equation (2.12)
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and taking into account the bottom boundary condition, we obtain the relation

∂2Φ
∂t2 + gk tanh(kD)Φ = 0 (2.16)

with the solution:
Φ(t) = R

(
Φke−iσt

)
(2.17)

which give the dispersion relation given by Laplace,

σ2 = gk tanh(kD) (2.18)

with the wave length L, wave period T0, σ = 2π/T0 and k = 2π/L. By replacing, we
obtained: (

2π

T0

)2

= g
2π

L
tanh kh. (2.19)

We introduce elevation surface phase as:

Θ = k · x− σt + Θ0 (2.20)

with 0 ≤ Θ0 ≤ 2π the phase shift and a the amplitude

a = i
σ

g
Φk (2.21)

the solution is of Airy (1845) wave for free surface elevation are:

η = a cos Θ, (2.22a)

u = a
k
k

σ
cosh(kz + kh)

sinh(kD)
cos Θ, (2.22b)

w = σ
cosh(kz + kh)

sinh(kD)
sin Θ, (2.22c)

p = p̄H + ρwga
cosh(kz + kh)

cosh(kD)
cos Θ, (2.22d)

where the mean hydrostatic pressure p̄H = −ρwg(z− η̄) + p̄a with pa being the at-
mospheric pressure. These is the linear approach of the wave propagation.

After Airy’s Works, Stokes (1847) extended the Airy’s solution to take into account
the neglected non-linear terms in equation (2.14). Even if the latter improves the fit with
actual observations of waves, the Airy’s solution is a reliable approximation for deep-
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bottom wave propagation which is almost irrotational, without being so far from the
reality to the coast on wave-breaking zones.

In order to demonstrate shoaling we must make two assumptions:

• Period is the variant of propagation and remains constant as depth changes;

• The energy remains constant until it reaches breaking up.

2.3.1 Celerity

Substituting this solution for ϕ equation (2.10) into the two linearized surface bound-
ary conditions yields the surface profile given in Equation (2.22a) and the wave celerity
C given by:

C =
gT0

2π
tanh(

2πh
L

) = C0 tanh(kh) (2.23)

where C0 = g/ω, ω = 2π/T0 and k = 2π/L.

2.3.2 Wave Energy

We have the potential and kinetic energy called Ei with the integration and L: the
wave length:

Ei =
1
L

(
2
∫ L

0
(ρgηdx)

η

2

)
=

1
16

ρgH2 (2.24)

which gives us both the formulation:

• Potential energy: Ep = 1
16 ρgH2

• Kinetic energy: Ec =
1
16 ρgH2

And then the total wave energy:

EH =
1
8

ρgH2 (2.25)

One might expect that wave power (or the rate of transmission of wave energy) would
be equal to wave energy times the wave celerity. This is incorrect, and the derivation of the
equation for wave power leads to an interesting result which is of considerable importance.
Wave energy is transmitted by individual particles which possess potential, kinetic and
pressure energy. Summing these energies and multiplying by the particle velocity in the
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x-direction for all particles in the wave gives the rate of transmission of wave energy or
wave power (P), and leads to the result (for an Airy (1845) wave)

P =
ρgH2

8
C
2

(
1 +

2kh
sinh 2kh

)
= EHCg (2.26)

where Cg is the group wave celerity, given by

Cg =
C
2

(
1 +

2kh
sinh 2kh

)
. (2.27)

In deep-water (h/L > 0.5) the group wave velocity Cg = C/2, and in shallow-water
Cg = C. Hence, in deep-water wave energy is transmitted forward at only half the wave
celerity.

2.3.3 Shoaling Coefficient

Therefore, we can say that the offshore flow of energy will be constant in its propaga-
tion until it comes to breaking near shore. We call EF0 the offshore flow and EFh the flow
relative to depth h. Thus:

EF0 = EFh

and thus
ECg0 = ECg

Where: Cg0 is the group velocity offshore and Cg is the group velocity relative to the
depth H. Considering that Cg0 ̸= Cg, we have with (2.25):

ρg
H2

0
8
· Cg0 = ρg

H2

8
· Cg →

H2

H2
0
=

Cg0

Cg

This ratio is called the shoaling coefficient:

K2
s =

H2

H2
0
=

Cg0

Cg
→ Ks =

√
Cg0

Cg
.

Thanks to the equations (2.27), (2.23) and Cg0 −→h→+∞

C0
2 , we deduce:

KS =

[
tanh(kh)

(
1 +

2kh
sinh(2kh)

)]−1/2

. (2.28)
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This coefficient allows us to use the Shoaling model (1.2a) in a very simplistic approach
of our model. This model will be improved in the extended version of the following part
2.3.4.

2.3.4 Extended Shoaling Model

The Shoaling model 1.7 did not succeed to model wave breaking with wave periods
T0 > 2 s. This model was therefore improved to give birth to the extended model below:

H(x, t) =
{

H0(x, t)KS(x, t) for x ∈ ΩS (2.29a)

F (γh(x, t)) for x ∈ ΩB (2.29b)

Extended Shoaling model

where F is a numerical parameterization function of the breaking defines below (2.30):

F (γh(x, t)) = H(xstart) +
[
H(xstop)− H(xstart)

]
· f (

x− xstart

xstop − xstart
) · g( hmax − h

hmax − hmin
)

(2.30)
with x ∈ ΩB = [xstart, xstop], h ∈ [hmin, hmax] and the following notations:
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x

H

H

ψ

Hstart

Hstop

xstart xstopΩB

hmin

hmax

Figure 2.2 – Illustration of notations.

Hstart and Hstop are the wave heights at the beginning and end of the breaking on the
domain ΩB = [xstart, xstop]. The first function f gives an account of breaking without
taking into account the bed shape. It simply gives the appearance of breaking. The
second function g takes into account the seabed and interacts with it. Note that if f and
g are the affine functions x 7−→ x, we find the breaking γh(x, t) illustrated on figure 5.2.
We can present below (figure 5.3) some of these functions that set the breaking:

x

y f1

f2

g

Figure 2.3 – Illustration of f1, f2 and g defined in [0, 1] −→ [0, 1].

These functions were chosen to try to capture a natural breaking. They have no physical
meaning.
It is necessary to stipulate that the model will first locate all the ΩB domains and then
apply the equation (2.30) on each of them.
This type of model gives us the following breaking for a simulation with a wave period
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T0 = 10 s and an offshore wave height of H0 = 2 m.
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Distance from deep sea [m]
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h 
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]

Wave height H(x) base on shoaling model improved (based on Munk criterion)

H(x) the wave height [m]
0 the initial sea bottom [m]

Munk criterion activation: H/h >  
End Munk criterion 
SWL

Figure 2.4 – Wave height H(x) with the Shoaling model with the last improve (using f and g) for a configuration with a
linear sea bottom of slopes about 0.11, wave period T0 = 10 s and offshore wave height of H0 = 2 m.

This breaking uses the function f : x 7−→ x
1
5 but it can be changed to the desired shape.

2.4 WWave Resolving

2.4.1 Context

The alternative method of resolving phases for shallow-water waves often relies on
Boussinesq-type (BT) equations, with notable contributors including (Peregrine 1967;
Freilich et al. 1984; Madsen et al. 1992; Liu et al. 2002). The mild-slope equation, as
proposed by Berkhoff (1972), is also commonly used as a port agitation model. It can be
used to isolate the eigen modes of vibration within it. These models aim to reconstruct the
sea surface’s characteristics in both space and time, encompassing horizontal and vertical
flow velocity. They inherently account for phenomena like refraction, diffraction, and, in
some instances, triad and quadruplet wave interactions. Dissipation processes, such as
bottom friction and depth-induced wave breaking, can be parameterized in these models.
However, they do not incorporate wind-induced wave generation.

Despite the effectiveness of these models in capturing coastal and nearshore wave
phenomena, numerical models based on BT equations have grown indispensable in the
field of coastal engineering, as highlighted by Rusu et al. (2012). The standard BT
equations for variable water depths were initially formulated by Peregrine (1967), though
they were limited to addressing weakly non-linear and weakly dispersive shallow-water
flows. To address this limitation, Madsen et al. (1991) and Nwogu (1993) expanded
upon the standard BT equations, creating a practical tool for simulating the non-linear
transformation of irregular, multi-directional waves in varying water depths before wave
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breaking occurs.
The most advanced BT models are versatile, applicable in both deep and shallow-

waters, as well as when dealing with highly non-linear waves. However, one limitation
of traditional BT models is their inability to accurately describe the overturning and
turbulence generation during wave breaking. Researchers have consequently developed
semi-empirical approaches to address these challenges.

Widely used in the coastal community, depth-integrate models are very popular be-
cause ; i) They are a simpler set of equations than the full three-dimensional ones, and
so allow for a much more straightforward analysis of sometimes complex problems ; ii)
In spite of their simplicity, the equations provide a reasonably realistic representation
of a variety of phenomena in atmospheric and oceanic dynamics. As these models are
vertically integrated, it is assumed that they cannot model transfers between horizontal
layers. Some models, such as the Shallow-Water (SW) model (Marche et al. 2007), neglect
dispersion

µ =
H2

0
λ2 ≪ 1, (2.31)

and remain easy to solve numerically. Other more advanced models, such as Green-
Naghdi (GN), Serre-Green-Naghdiand (SGN) KdV (Kim et al. 2001), take dissipation
into account but are numerically difficult to solve.

In our work, we’ll be using the most popular model, the Shallow-Water model (Marche
et al. 2007) and the REF/DIF model (Kirby et al. 1994).

2.4.2 Derivation of Shallow-Water Model

Taking back the equation Euler equation (2.4), we consider the 1D Euler’s equations
without surface tension:



free surface condition : p = 0,
Dh
Dt

=
∂h
∂t

+ u
∂h
∂x

= w, on z = h(x, y, t) (2.32a)

momentum equation :
∂u
∂t

+ u
∂u
∂x

+
1

ρw

∂P
∂x

+ gz = 0 (2.32b)

continuity equation :
∂u
∂x

= 0, (2.32c)

bottom boundary condition : u
∂z
∂x

= 0, on z = 0. (2.32d)

Here, p is the pressure, h the vertical displacement of the free surface, u the x velocity,
ρw the density, g the acceleration due to gravity. (Figure 2.5).
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x

z

Bed

h(x, t)
u(x, t)

Free surface

Figure 2.5 – Shallow-Water diagram for a 1D flow.

For the first step of the derivation of the shallow-water equations, we consider the
global mass conservation. We integrate the continuity equation (2.32c) vertically as fol-
lows,

0 =
∫ h

0

∂u
∂x

dz (2.33a)

=
∂

∂x

∫ h

0
u dz− u|z=h

∂h
∂x

, (2.33b)

where the bottom boundary condition (2.32d) was used in the fourth row. With the
surface condition (2.32a), equation (2.33b) becomes

∂h
∂t

+
∂

∂x

∫ h

0
u dz = 0 (2.34)

In the following stage, we proceed with the long-wave approximation, where we con-
sider the wavelength to be significantly greater than the fluid’s depth. It’s important to
note that we do not make any assumptions regarding the perturbations of having small am-
plitudes, ensuring that non-linear terms are accounted for rather than being disregarded.
By employing the long-wave approximation, we can derive the hydrostatic pressure by
performing the integration of the vertical component of the momentum equation.

∫ h

z

∂p
∂z

dz = −
∫ h

z
ρg dz (2.35a)

p(x, h, t)− p(x, z, t) = −ρg(h(x, t))− z) (2.35b)

p(x, z, t) = ρg(h(x, t)− z). (2.35c)

We applied to the surface condition represented as p(x, h, t) = 0. Utilizing this equa-
tion for the hydrostatic pressure (2.35c) and additionally supposing that there are no
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vertical variations in the parameter u (⇒ equation (2.32a) = 0), the horizontal momen-
tum equations of the shallow-water system can be derived in the following manner:

∂tu + u∂xu + g∂xh = 0. (2.36)

The conservation of mass given by (2.34) becomes

∂th + ∂x(hu) = 0. (2.37)

Then, equations (2.36) and (2.37) are the shallow-water equations. More details on the
derivation are available on (Marche 2007).

2.4.3 Shallow-Water Equations with Variable Bottom

Previously, we presented the flat-bottomed Shallow-Water model. However, our model
requires a variable-bottom hydrodynamic model. In fact, our model performs a large
number of simulations with different seabeds before completion. It is therefore essential
that the model can run a hydrodynamic simulation on any bottom. A variable bottom on
the Shallow-Water model adds an additional source term and complexity to the numerical
implementation. The hyperbolic system of equations (2.36) and (2.37) thus becomes:

∂th + ∂xq = 0 (2.38a)

∂tq + ∂x

(
q2

h
+

1
2

gh2
)
= −gh∂xZ (2.38b)

+ Boundary condition, (2.38c)

with h the water height, u the velocity and q = hu the flow. We use the notation di =
∂
∂i .

These quantities are presented in figure 2.6.

x

z Seabed

Z(x)

h(x, t)
u(x, t)

Free surface

Figure 2.6 – Shallow-Water diagram for a 1D flow and variable bottom.
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The equation (2.38a) represents the continuity. The second (2.38b) is the moment and
the third the boundary conditions. Generally, the resolution of these equations is done
using the finite volume method. Although the addition of source terms (variable seabed
(Berthon et al. 2018; Marche et al. 2007), Exner coupling (Serrano-Pacheco et al. 2012),
...) makes the resolution more complex, the resolutions remain mainly on this principle.
In our case, we use finite volume solving with a VFRoe numerical scheme from (Marche
et al. 2007).

2.4.4 REF/DIF Numerical Model

REF/DIF is a phase-resolving parabolic refraction-diffraction model for ocean surface
wave propagation. It was originally developed by Jim Kirby and Tony Dalrymple
starting in 1982, based on Kirby’s dissertation work. This work led to the development
of REF/DIF 1, a monochromatic wave model (Kirby et al. 1994).

This model is solving the Berkhoff (1972) equation, known as the mild slope equation.
It is written in terms of the surface displacement, η(x, y). The equation, in terms of
horizontal gradient operator, is

∇h ·
(
CCg∇hη

)
+ σ2 Cg

C
η = 0 (2.39)

where C and Cg are defined in (2.27) and (2.23).
In contrast to the mild slope model which is valid for varying bathymetry, researchers

in the area of wave diffraction were developing models for constant bottom applications.
For example, Mei et al. (1980) developed a simple parabolic equation for wave diffraction
and applied it to the diffraction of waves by a slender island. Their equation is

∂A
∂x

=
i

2k
∂2A
∂y2

where A is a complex amplitude related to the water surface displacement by

η = Aei(kx−σt).

Yue et al. (1980), using a multiple-scale approach, developed a nonlinear form of this
equation, which accurately predicts the propagation of a third order Stokes wave.

The parabolic model of REF/DIF, described below, combines the essential features
of the two approaches described above. The variable depth features of the mild-slope
equation (along with extensions to include effects of wave-current interaction) are retained,
but the model is developed in parabolic form and in terms of a complex amplitude A.
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(
Cg + U

)
Ax + VAy + i(k̄− k)

(
Cg + U

)
A +

σ

2

{(
Cg + U

σ

)
x
+

(
V
σ

)
y

}
A

− i
2σ

((
p−V2

)
Ay

)
y
− σ

k2

2
D|A|2A = 0

where p = CCg and k̄ = reference wave number, taken as the average wave number along
the y axis, and U is the mean current velocity in the x coordinate direction and V is in
the y direction. The nonlinear term includes D, which is

D =

(
cosh 4kh + 8− 2 tanh2 kh

)
8 sinh4 kh

Finally, Kirby (1986a) derived the above equation for a wide-angle parabolic approx-
imation, which allows the study of waves with larger angles of incidence with respect to
the x axis. This more precise equation was extended (Kirby 1986b) and used in REF/DIF
1 (Kirby et al. 1994).

Remarks : The mild slope equation, excluding additional terms for bed slope provides
accurate results for the wave field over bed slopes ranging from 0 to approximately 1/3
(Booij 1983). This must be taken into account when using the REF/DIF model.
In this thesis, we use version 2.5 of REF/DIF 1.

2.5 SSpectral Wave Resolution

2.5.1 Context

We define a wave has a height H, a period T0, a direction θ, and so forth. modelling
waves with statistical is realistic because it has been shown that the N individual wave
heights H1, H2, . . . , HN of a certain time series follows a Rayleigh distribution (Figure
2.7), expressed here with its survival

P(H > h) = e−(h/Hrms)
2

(2.40)

where Hrms =
√

1
N ∑N

i=1 H2
i and the Hi denote the individual wave height in a certain

time series. The Rayleigh distribution is generally suitable for commonly observed waves.
As soon as the waves are quite high, the distribution of Tayfun (1980) must be considered.
Tayfun distribution is more realistic since most of the non-linear waves effects are taken
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into account.
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Figure 2.7 – Rayleigh density function f (H, 1.9). The red area is the third-highest observed waves in a certain time series.
The dashed line represents H1/3, the mean of the third-highest observed waves also assimilated to the significant wave height
Hs.

With that kind of distribution, a common variable named the significant wave height Hs

is determined. From wave-wave analysis, Hs is defined as H1/3 : the mean of the third-
highest waves of the time series. It corresponds to a sea state in a stationary condition.
Another variable used is Hmax which is the maximum wave height observed, it is highly
depending on the length of the time series.

2.5.2 Mathematical Background

An important problem occurs in the analysis of the wave motion when the wave has
a length greater than L, which requires the treatment of irregularities. One can use the
statistical analyses developed by Fourier (FFT) (Nussbaumer et al. 1982) because the
waves are supposed to satisfy the linear wave theory (locally). Indeed, the water level
signal can be decomposed into superimposed sinusoidal waves. And thus be decomposed
into Fourier series in the form of a given direction α (for simplicity’s sake):

η(x, t) =
∞

∑
n=0

ηn(x) =
∞

∑
n=0

An cos (knx + ϕn) (2.41)

where An denote Fourier’s amplitude is associated with a particular frequency kn and
a particular phase shift ϕn. The variance of a sinusoidal surface is the average over one
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wavelength L of the surface elevation squared (assuming that the mean surface is at zero):

V(η1) =
1
L

∫ L

0

[
A sin

(
2πx

L

)]2

dx =
1
L

∫ L

0
A2
[

1
2
−

HH
HHH

HH

cos
(

4πx
L

)]
dx =

1
2

A2 (2.42)

Thus the energy per unit area of a sinusoidal wave can also be written in terms of its
variance:

energy
area

= ρgV(η1). (2.43)

We have therefore with (2.42) and (2.41),

V(η) =
∞

∑
n=0

1
2

A2
n. (2.44)

Now let ∆kn be a frequency interval centered on frequency kn, whose sinusoidal has
amplitude An. We then define

E (k = kn) ≡ lim
∆kn→0

1
2 A2

n

∆kn
. (2.45)

In this definition, keep in mind that each An is associated with a particular frequency kn,
and that the limit operation holds for each value of n. We are thus defining a function of
the spatial frequency, which becomes a as the bandwidth ∆kn goes to zero.
The continuous function E(k) is called the omnidirectional elevation variance spectrum.
“Omnidirectional” means that there is no reference direction (e.g., a direction of wave
propagation relative to the wind direction) included in the quantity. Equations (2.44) and
(2.45) show that integrating the omnidirectional variance spectrum over all frequencies
gives the total elevation variance:

V(η) =
〈

η2
〉
=
∫ ∞

0
E(k)dk (2.46)

which gives us in multi-directional, the well known formula

E =
∫ ∞

0

∫ 2π

0
E(k, θ)dk dθ (2.47)

of the wavenumber-direction spectrum. Other expressions of the wave spectrum are also
used. In particular, wave lengths and wave frequencies are interrelated via the dispersion
equation (2.18) and

E(k, θ)dk dθ = E( f , θ)d f dθ. (2.48)
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The wave density spectrum (i.e. right side of (2.48)) defines the repartition of the wave
energy 2 along frequencies and direction. Unlike the signal of the free surface elevation,
the density spectrum is relatively regular and allows compressing the information of the
full signal.

As recalled in (Tolman et al. 2009), without current E is a conserved quantity. In case
of current, spectral component is no longer conserved due to the work done by current on
the mean momentum transfer of waves. Hence, ones are also interested in using the wave
action spectrum A as

A(k, θ) =
E(k, θ)

σ
(2.49)

which is conserved whatever the case (Whitham 1965). Thanks to that definition, we can
express the wave propagation as

DA
Dt

=
S
σ

(2.50)

where A is the action wave spectrum, D/Dt is here the total derivative and S is the net
effect of sources and sinks for the wave spectrum E. Since left part of (2.50) considers
linear wave propagation as presented before, any perturbing effects are gathered in the
expression of S.

2.5.3 Interesting Quantity

The first quantity of interest is generally the significant wave height Hs. From the
spectrum we define

Hm0 = 4E1/2 = 4
[∫ ∞

0

∫ 2π

0
E( f , θ)d f dθ

]1/2

. (2.51)

In practice H1/3 ≃ Hm0 (Longuet-Higgins 1963). Hm0 is therefore the spectral represen-
tation of the significant wave height. The denotation m0 stands for the zero moment of
power spectrum, which is more generally defined for the order p as

mp =
∫ ∞

0

∫ 2π

0
f pE( f , θ)d f dθ. (2.52)

Several other quantities often used in ocean engineering derive from the spectrum. In
particular, fp is the peak frequency, with E

(
fp
)
= Emax and the peak period Tp = 1/ fp.

Other famous periods Tm0,1, Tm0,2 and Tm0,−1 stem from the period of order p defined as

Tm0,p =

[∫ fmax
0

∫ 2π
0 f pE( f , θ)d f dθ∫ fmax
0 E( f )d f

]−1/p

, (2.53)

88



2.5. Spectral Wave Resolution

with fmax the highest frequency observed. Finally, if we define

a1( f ) =
∫ 2π

0
E( f , θ) cos θdθ/

∫ 2π

0
E( f , θ)dθ, (2.54a)

b1( f ) =
∫ 2π

0
E( f , θ) sin θdθ/

∫ 2π

0
E( f , θ)dθ, (2.54b)

then the mean wave direction for the frequency f is

θm( f ) = arctan
(

b1( f )
a1( f )

)
. (2.55)

In particular, θm
(

fp
)

is the main wave direction (or peak wave direction). Ones are also
interested in the mean wave direction θM defined by integrating over the direction as

θM = arctan

(∫ ∞
0 b1( f )d f∫ ∞
0 a1( f )d f

)
. (2.56)

To reconstruct the signal from a statistical approach as detailed here is valid in mostly
all applications. However a wave-wave analysis would be preferred for applications when
the phases of waves are of first interest, such as in the breaking zone.

2.5.4 XBeach Numerical Model

The XBeach model is a process-based model developed by the Delft University of
Technology. It is a two-dimensional, depth-integrated numerical model that simulates
the hydrodynamics, sediment transport, and morphological changes of coastal systems.
XBeach is a flexible model that can be used to simulate a variety of coastal processes,
including wave breaking, bedload transport, and nearshore morphological changes. The
model is based on the principles of conservation of mass, momentum, and energy and uses
a finite-difference numerical scheme to solve the governing equations. XBeach has been
widely used in coastal studies due to its flexibility and accuracy, and it has been applied
to a wide range of coastal systems, including estuaries, beaches, and coastal wetlands.
The model can be used as a profile model in 1D (Pender et al. 2013), or as an area model
in 2D (McCall et al. 2010), and today, there are three modes in which the hydrodynamics
can be resolved in XBeach, being:

• Stationary – All wave group variations, and thereby all infragravity motions, are
neglected, and only the mean motions are included. This type can be applied for
modelling morphological changes under moderate wave conditions;
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• Surfbeat – This in-stationary, hydrostatic mode, is wave group resolving, and is
hence also applicable when one is interested in the swash zone processes;

• Non-hydrostatic – The non-linear Shallow-Water equations are solved, and hence
individual short-wave propagation and transformation is resolved.

In our case, we will focus on the Stationary mode.

2.5.4.1 Hydrodynamics

The wave action balance is solved to obtain the wave forcing:

∂A
∂t

+
∂cx A

∂x
+

∂cy A
∂y

+
∂cθ A

∂θ
= −Dw

σ
, (2.57)

where A is the wave action, C the wave propagation speed (where the subscripts refer
to the x− and y−directions, and θ−space), θ is the angle of incidence, Dw the wave energy
dissipation per directional bin and σ the intrinsic wave frequency. The wave action as
above (2.58) by:

A(x, y, t, θ) =
Sw(x, y, t, θ)

σ(x, y, t)
. (2.58)

In which the Sw is the wave energy density per directional bin. The total wave energy
EH is obtained by integration of the wave energy density Sw over all directional bins:

EH =
∫ 2π

0
Sw(x, y, t, θ)dθ. (2.59)

The distribution of the total wave energy dissipation D̄w over all directional bins is
calculated proportional to the energy density distribution as follows:

Dw(x, y, t, θ) =
Sw(x, y, t, θ)

Ew(x, y, t)
D̄w(x, y, t). (2.60)

The total wave energy dissipation is calculated using a method described by Roelvink
(1993) as the product of the dissipation per breaking event and the fraction of broken
waves Qb. The energy dissipation per wave breaking event is assumed to take place over
half of the representative wave period T0, resulting in the following expression for the
total, directionally integrated, wave energy dissipation:

D̄w = α
2
T0

QbEH , (2.61)

where α is a calibration factor and Ew the total wave energy (Equation (2.59)). The
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fraction of breaking waves Qb is estimated from a Rayleigh distribution (Battjes et al.
1978):

Qb = 1− exp
(
−
(

Hrms

Hmax

)n)
, (2.62)

where the root-mean-square wave height Hrms is calculated from the wave energy EH,
and the maximum wave height Hmax is calculated using the breaker index γ (the ratio
between the breaking wave height and the water depth, usually given the value 0.78).

EH ∼
1
8

ρgH2
rms ⇒ Hrms =

√
8Ew

ρg
, Hmax = γbh. (2.63)

This closes the set of equations for the wave action balance (Equation (2.57)). From the
wave energy, the wave-induced radiation stresses can be determined using linear wave
theory. Similar to the wave action balance, a roller balance is solved and coupled to
the wave energy balance, where the wave energy dissipation forms a source of energy in
the roller balance. The roller-induced radiation stress is calculated and together with
the wave-induced radiation stress they are used to calculate the wave forcing: The flows
are calculated using a depth-averaged formulation of the Shallow-Water equations, taking
into account wave-induced mass flux and return flows. This Generalized Lagrangian Mean
(GLM) formulation uses Lagrangian velocities (Andrews et al. 1978):

∂uL

∂t
+ uL ∂uL

∂x
+ vL ∂uL

∂y
− f vL − vh

(
∂2uL

∂x2 +
∂2uL

∂y2

)
=

Tsx

ρh
−

TE
bx

ρh
− g

∂η

∂x
+

Fx

ρh
(2.64a)

∂vL

∂t
+ uL ∂vL

∂x
+ vL ∂vL

∂y
+ f uL − vh

(
∂2vL

∂x2 +
∂2vL

∂y2

)
=

Tsy

ρh
−

TE
by

ρh
− g

∂η

∂y
+

Fy

ρh
(2.64b)

∂η

∂t
+

∂uLh
∂x

+
∂vLh

∂y
= 0 (2.64c)

Where the Lagrangian velocity components (denoted by the superscript L) are the super-
position of the Eulerian velocity and the Stokes’ drift velocity:

uL = uE + uS and vL = vE + vS. (2.65)

Remark: In this thesis, we use version 1.23 of XBeach.

2.5.5 SWAN Numerical Model

SWAN, in its third version, is in stationary mode (optionally non-stationary) and is
formulated in Cartesian or spherical coordinates. The unconditional numerical stability
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of the SWAN model makes its application more effective in shallow-water. In SWAN, the
waves are described with the two-dimensional spectrum of the wave action density A,

A(x, y, σ, θ) =
E(x, y, σ, θ)

σ
(2.66)

where x and y are the horizontal components of geographic space, σ is the relative fre-
quency, θ is the wave direction, and E is the energy density.

The spectrum considered in the SWAN model is that of the wave action density A(σ,
θ ) rather than the spectrum of the energy density E(σ, θ). This is because, in the pres-
ence of currants for the reasons we mentioned above (non-conservation of EH) (Whitham
2011). Because wave action propagates in both geographic and spectral space under the
influence of genesis and dissipation terms, wave characteristics are described in terms
of two-dimensional wave action density. The action density spectrum balance equation
relating the propagation term to the effects of the source and sink terms, in Cartesian
coordinates, is (Hasselmann et al. 1973)

∂A
∂t

+
∂ (Cx A)

∂x
+

∂
(
Cy A

)
∂y

+
∂ (Cσ A)

∂σ
+

∂ (Cθ A)

∂θ
=

S
σ

. (2.67)

On the left-hand side of Equation (2.67), the first term represents the local temporal
variation of the wave action density, the second and third terms represent the propagation
of wave action in the geographical space of velocities Cx and Cy, the fourth term represents
the shifting of the relative frequency due to variations in bathymetry (with propagation
velocity Cσ) and currents (with propagation velocity Cθ), and the fifth term represents
the refraction induced by the combined effects of depth and currents. Cx, Cy, Cσ, Cθ

propagation velocities are obtained from linear wave theory. The term in the right-hand
side of Equation (2.67) represents processes that generate, dissipate, or redistribute wave
energy, and S can be expressed as (Lv et al. 2014)

S = Sin + Swc + Sbrk + Sbot + Sn14 + Sn13 (2.68)

where Sin is the wind energy input. The dissipation terms of wave energy is represented
by the contribution of three terms: the white capping Swc, bottom friction Sbot, and
depth induced breaking Sbrk. Sn14 and Sn13 represent quadruplet interaction and triad
interactions, respectively.

A finite difference scheme is used for each of the five dimensions: time, geographic
space, and spectral space made the numerical implementation in SWAN effective. The
following guidelines must be followed in order to obtain the discretization adopted at the
SWAN model level for numerical computation:
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1. time of a constant and identical time step ∆t for the propagation term and the
source term,

2. geographical space of a rectangular grid with constant spatial steps ∆x and ∆y,

3. spectral space of a constant directional step ∆θ and a constant relative frequency
step ∆σ/σ,

4. frequencies between a fixed minimum maximum values of 0.04 Hz and 1 Hz respec-
tively,

5. the direction θ can also be delimited by the minimum and maximum values θ min
and θmax (as an option).

Remark: In this thesis, we use version 41.31 of SWAN.

2.5.6 Hydrodynamic Simulations

In this section, we focus on two types of simulations. The simulations in the flume
and those in the open sea.

2.5.6.1 Flume Experiment

For this section, we will concentrate on a reduced number of simulations. We will limit
ourselves to simulate the hydrodynamics on two specific cases. The case LIP11D - 1C
(table S.6, described in chapter 3 section 3.4.1.2) which is a flume experiment. This case
is part of the XBeach benchmark (Roelvink et al. 1995b) and has allowed the validation of
this one. Other models like CROCO (Marchesiello et al. 2022) based their validation on
this benchmark. This experiment present hydrodynamic and morphodynamic data. For
the second case, we choose a very simple linear seabed. This one is the result of the linear
interpolation on the bathymetry LIP11 1C. For these 2 cases, we perform hydrodynamic
simulations with the SWAN model 2.5.5, XBeach model 2.5.4, an extended Shoaling model
presented in 2.3.4 and Shallow-Water model presented in 2.4.3. The results are evaluated
with the criterion RMSEH which corresponds to the RMSE (root mean square) between
experimental and numerical H.
In order to configure our models, we set the domain Ω over 180 m with a uniform
subdivision of 180 cells. The incoming wave boundary condition is provided using a
JONSWAP wave spectrum (Hasselmann et al. 1973), with a significant wave height of
Hs = 0.6 m and a peak frequency at fp = 5 s−1. The breaker model of XBeach uses
the Roelvink (1993) formulation, with a breaker coefficient of γ = 0.4, a power n = 15,
and a wave dissipation coefficient of 0.5. For the breaker model of SWAN and Shoaling,
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we simply use the breaker coefficient of γ = 0.4. The parameter files are present in the
appendix A.1. The results of LIP11D - 1C and its linear interpolation are in figures 2.8
and 2.9 below.
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Figure 2.8 – Hydrodynamic results obtained with the Shoal-
ing, SWAN, XBeach and Shallow-Water models. Bathy-
metric configurations from the LIP 1C channel experiment.
Black points, measured HRMS, black bathymetry, green H
from extended shoaling (RMSEH = 0.045 m), red H from
SWAN (RMSEH = 0.033 m), blue H from XBeach (RMSEH
= 0.028 m) and orange from Shallow-Water model.
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Figure 2.9 – Hydrodynamic results obtained with the Shoal-
ing, SWAN, XBeach and Shallow-Water models. Seabed con-
figurations from a linear interpolation of the LIP 1C channel
experiment. Black seabed, green H from extended shoaling
(RMSEH = 0.059 m), red H from SWAN (RMSEH = 0.024
m), blue H from XBeach (RMSEH = 0.043 m) and orange
from Shallow-Water model.

We notice that XBeach reproduces best the experimental results (RMSEH = 2.8 cm).
However, the 3 results are still very good and very realistic. For the linear profile, we
have chosen to leave the experimental points of the previous experiment. The results
are surprising because SWAN remains very close to these points (RMSEH = 2.4 cm).
In the other case, we noticed that the points are almost superimposed, whether in the
experimental or linear seabed.

2.5.6.2 Open-Sea Simulation

For this section, we perform realistic open-sea simulations on beach profiles at in situ
scale. These simulations will allow us to introduce a seabed set that can be used in our
morphodynamic model. We perform simulations on configurations such as linear, convex
and concave seabed. For these 3 cases, we perform hydrodynamic simulations with the
SWAN model 2.5.5, XBeach model 2.5.4, an extended Shoaling model presented in 2.3.4
and Shallow-Water model presented in 2.4.3.
In order to configure our models, we use different physical parameters (H; T0, γ) than
before, more suited to the open sea. We set the domain Ω over 600 m with a uniform
subdivision of 600 cells. The incoming wave boundary condition is provided using a
H0 = 2 m parameter, with a wave period T0 = 12 s. The breaker model of XBeach uses
the Roelvink (1993) formulation, with a breaker coefficient of γ = 0.55, a power n = 15,
and a wave dissipation coefficient of 0.5. For the breaker model of SWAN and Shoaling,
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we simply use the breaker coefficient of γ = 0.55. The parameter files are present in the
appendix A.1. This gives us the following results figure 2.10.
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Figure 2.10 – Hydrodynamic results obtained with the Shoaling, SWAN, XBeach and Shallow-Water models. Linear, convex
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XBeach and orange η from Shallow-Water model.

Also, we notice that the 3 spectral hydrodynamics are relatively close. The extended
shoaling model seems to be slightly different from the two others.

2.6 CConclusion

In this chapter, we have seen the mathematical formalism on which coastal hydrody-
namic models are based. We have chosen to present in detail the spectral and temporal
resolution models and the way to generate a significant wave height Hs. We present more
precisely the well known models SWAN, XBeach, REF/DIF and Shallow-Water. Spectral
models are very quick to generate a significant height Hs, while temporal models are very
long on this fact, but they have the advantage of describing the whole water surface and
also calculating the circulation, which may be important for the definition of our func-
tional. The REF/DIF monochromatic spectral model, which reconstructs the phase, is a
2D intermediary that enables obtaining an Hs-type quantity very quickly. We also have
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introduced an extended shoaling model which allows us to have correct results at a very
low complexity. The hydrodynamic simulations presented for the benchmark (Roelvink
et al. 1995b) give the results very close to the experimental data. Open-sea simulations
have also been introduced in order to highlight the versatility of our model.

• We have introduced the mathematical formalisms of coastal hydrodynamics.

• We design a new hydrodynamic model which we call extended shoalling model.

• We performed simulations of a benchmark: LIP11D-1C with SWAN, XBeach and
extended shoaling models.

• We performed simulations on Open-Sea with linear, concave and convex configura-
tion using SWAN, XBeach, extended shoaling models and Shallow-Water model.

Chapter key points
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Beaches morphodynamic modeling based on
Hadamard Sensitivity Analysis

In the last chapter, we have selected some interesting wave models to incorporate
into our OptiMorph model, such as XBeach, SWAN, REF/DIF, Shoaling and
Shallow-Water. However, the OptiMorph model in its chapter 1 version couldn’t
couple just any wave model, as there is the need to calculate a particular gradient
(with respect to shape), which was done analytically. In this chapter, we present
a morphodynamic model which can be coupled with any wave model capable of
producing time/spectral averaged wave quantities. This model based on a wave en-
ergy minimization principle highlights the morphodynamic phenomenology, such
as the sandbar creation. Such a model can be used in solving engineering op-
timization problems. It is also developed to illustrate the idea that beach sand
transport can be considered as a non-local phenomenon. We used wave calcula-
tions from SWAN, XBeach and Shallow-Water in our model, and we compared
the morphodynamic results to LIP and SANDS hydro-morphodynamic benchmark
as well as open-sea configurations. Using supplementary mathematical develop-
ment, we improved the minimization method using the Hadamard derivative.
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3.1 IIntroduction

Morphodynamic models are generally very complex and highly parameterized.
They separately solve the physical equations of hydrodynamics and morphody-

namics at a very small scale of the order of second in time and of the wave length in
space. The OptiMorph model that we presented in Cook (2021) and Dupont et al. (2023)
proposes a more global approach based on an optimization principle.

The optimization theory is the study of the evolution of a system while searching sys-
tematically for the minimum of a function derived from some of its physical properties.
Using a certain number of mathematical optimization developments devoted to coastal
sciences (Isèbe et al. 2014; Isèbe et al. 2008b; Isèbe et al. 2008a; Bouharguane et al. 2010;
Mohammadi et al. 2014; Mohammadi et al. 2011; Cook et al. 2021c; Mohammadi 2017;
Bouharguane et al. 2012; Dupont et al. 2022; Dupont et al. 2023), we have designed a
model that describes the evolution of the sea bottom elevation while taking into account
the coupling between morphodynamic and wave processes. This study is based on the
assumption that the sea bottom adapts in time to minimize a certain wave-related func-
tion. The choice of this function determines the driving force behind the morphological
evolution of the seabed. This optimization problem is subjected to a limited number of
constraints, allowing for a more accurate description of the morphodynamic evolution.

The purpose of this study is to use the Hadamard (1914) derivative in order to calculate
the gradient of any cost function J with respect to the shape ψ, which allows us to solve
the optimization problem at the core of the model. This strategy aims to create a generic
morphodynamic model that can be used with any wave model.

The chapter starts with the Hadamard’s strategy by presenting the different ways to
compute the gradient with respect to the shape ψ. Next, Hadamard’s strategy is then
verified using analytical cases. Finally, applications are performed with OptiMorph model
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using Hadamard strategy. We show that we can therefore use complex wave models such
as XBeach (Roelvink et al. 2009), SWAN (Booij et al. 1996) and Shallow-Water (Marche
et al. 2007). Part of the simulations are linked to the LIP and SANDS flume experiments
(Roelvink et al. 1995b; Eichentopf et al. 2018). Another part concerns simulations in
open-sea configurations.

3.2 GGradient Calculation with Respect to the Shape ∇ψJ

Calculation of ∇ψJ is necessary to do shape optimization with descent method equa-
tion (1.9). This quantity is not easy to compute since we do not differentiate on an axis
but on a shape ψ. The cost function J depends on wave height H; it is thus advisable to
have a very simple wave model in order to differentiate it easily. We assume at first that
J is of the form J (H(ψ(x))) involving dependencies with respect to wave quantities H.
This sensitivity is given by:

∇ψJ = ∇HJ ∇ψH,

= ∇H(
1

16
ρgH2)∇ψH,

=
1
8

ρgH∇ψH.

(3.1)

Calculating ∇ψJ reduces to that of ∇ψH. It can be done analytically using the simple
shoaling model described in equations (1.2a) and (1.2b) as described later in section 3.2.1.
One can also use a heavy formalism like automatic differentiation (Hascoet et al. 2004;
Mohammadi et al. 2011). These strategies are described below and in section 3.3, where
we show how to obtain ∇ψH to whatever may be our functions H and ψ.

3.2.1 Analytical Calculation of ∇ψH

The analytical method is the most precise (because it gives the exact value) and the
fastest in calculation time. To illustrate the purpose, we take equation (1.2a) of H and
we differentiate them in the following way:

∇ψH =

{
H0(t)∇ψKs(x, h) pour x ∈ ΩS

γ∇ψh(x, t) pour x ∈ ΩB
. (3.2)
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The problem is reduced to the calculation of ∇ψKS(x, t) and ∇ψh(x, t). The relation
h = h0 − ψ ensures that ∇ψh(x, t) = −1. Moreover, we have:

KS =

[
tanh(kh)

(
1 +

2kh
sinh(2kh)

)]−1/2

. (3.3)

Let U(X) = tanh(X)

(
1 +

2X
sinh(2X)

)
and X = kh. Introducing U in equation (3.3)

and derivating ψ results in:

∇ψKS = −1
2

U−3/2∇ψU. (3.4)

By trigonometric transformation, we can demonstrate that:

∇ψU = ∇ψX
2 cosh2(X)− X sinh(2X)

cosh4(X)
, (3.5)

we also have:
∇ψX = h∇ψk + k∇ψh = h∇ψk− k. (3.6)

Moreover, differentiating both sides of the dispersion equation σ2 = gk tanh(kh) by ψ

gives

∇ψk =
k2

cosh(kh) sinh(kh) + kh
. (3.7)

Combining (3.4),(3.5), and (3.7), we obtain ∇ψKS, and therefore ∇ψH, on ΩS.

This method is the most accurate and robust because it gives the analytical solution
directly. However, it is applicable to a very limited number of wave models. Indeed, they
must be very simple to be differentiated by hand. Our ambition is to have a strategy that
may allow differentiating the mathematical representation of any hydrodynamic.

3.2.2 Finite Difference Calculation of ∇ψH

Finite difference methods are based on the idea of approximating the derivative of a
function at a point by taking the difference between the values of the function at two
adjacent points. Considering the directional gradient formula at ψ along direction l:

∇ψH(ψ) = lim
ε→0

H(ψ + εl)− H(ψ)

ε
. (3.8)

We could define a first order finite difference approximation of the gradient at ψ ∈ RN
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taking for l the vectors ei=1,..N of the canonical basis of RN. The ith evaluation provides the
corresponding component of the gradient vector. This method requires N + 1 evaluation
of the wave model which makes the method computationally expensive, as it can be
classically of the order of several thousand runs in practice.

3.2.3 Automatic Differentiation (AD) Method to Calculate ∇ψH

Automatic differentiation (AD) of programs is an important tool for numerical opti-
mization and scientific computing. It is a technique for computing derivatives of a given
program by successive derivation of the lines of the code. AD can be used to compute
derivatives of functions with respect to both scalar and vector variables (Griewank et al.
2008).

3.2.3.1 Direct and Reverse Modes of Automatic Differentiation

Direct AD uses the chain rule to compute derivatives of a program with respect to the
input parameters of the code. The direct AD method can be used to compute derivatives
of functions of any order, including higher-order derivatives. This method is relatively
simple to implement, and is often used when the number of input variables is small.
On the other hand, when the size of input variables is large, the reverse mode of AD is
used. The computation cost is independent of the size of the inputs. A typical AD tool
is the TAPENADE program (Hascoet et al. 2004) which provides Fortran or C codes for
the derivatives of programs in direct and reverse modes. This means that we need to
provide the source code. As a consequence, the main limitation of this approach is that
it cannot be applied to a commercial code when the source code is not provided. Even
when the code is provided (open source), it is written in a modular way, which makes it
very difficult to isolate the variables to differentiate.

3.3 UUsing Hadamard for the Calculation of ∇ψJ
In this section, we focus on the calculation of ∇ψH in order to obtain ∇ψJ (as

illustrated in section 3.2). This method can be applied whatever may be the variables:
we can directly calculate ∇ψJ . However, in this case, the approximation would be less
good because the analytical derivative of J (equation (3.1)) is always more accurate.

3.3.1 Principle

We use the approximation described in (Hadamard 1914; Mohammadi 2007; Moham-
madi 2010). We consider ∇ψH in the sense of Hadamard following the definition:
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∇ψH = lim
ε→0

H(ψ + εn)− H(ψ)

ε
, (3.9)

where n is the normal to the shape ψ. This can be seen as applying a Gâteaux (1913)
derivation in the direction normal to the shape. The principle is illustrated in figure 3.1.

ε.n

ψ + ε.n ψ

z

x

Figure 3.1 – Representation of two sea bottom profiles ψ and ψ + εn. To calculate the gradient, we need to calculate at all
points the associated normal vector n.

Using the Taylor-Young formula at order 1, we consider the following approximation:

∇ψH = lim
ε→0

H(ψ) + ε∇X H.n− H(ψ)

ε
,

≈ (∇X H).n,
(3.10)

with X = (x , z)⊺. This approximation is illustrated in the following section 3.3.2 on
simple analytical examples; and also on the simple shoaling model in section 3.3.4.

3.3.2 Analytical Examples of Hadamard Derivative

In this section, we illustrate analytical examples of derivation of ψ on a quantity A;
concretely, we calculate ∇ψ A.

3.3.2.1 Flat form

We consider the relation A = ψ2. We set in a general way ψ = {(x, y) ∈ R2| y−
fψ(x) = 0} the space of ψ with fψ the function describing the bottom.
The flat form ψ = {(x, y) ∈ R2| y − c = 0} deformed from εn is given by ψ + εn =

{(x, y) ∈ R2| y− c− ε = 0}. It could be illustrated by the figure 3.1.
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x

y

ψ

n =

(
0
1

)c

ψ + εn

Figure 3.1 – Illustration of ψ and ψ + εn with the function ψ : x → c.

Here we have:
ψ = {(x, y) ∈ R2| y− c = 0} and
A = ψ2 = {(x, y) ∈ R2| y− c2 = 0},

then, we have, thank to the definition, on the one hand:

∇ψ A = lim
ε→0

(
1
ε
[A(ψ + εn)− A(ψ)]

)
,

= lim
ε→0

1
ε
[SSψ2 + 2ψε + ε2︸︷︷︸

→0

−S
Sψ2]

 because A(ψ + εn) = (ψ + ε)2,

= 2ψ,

on the other hand:

∇X A.n = 2ψ∇X(ψ).n = 2ψ

(
0
1

)(
0
1

)
= 2ψ, (3.1)

and therefore
∇X A.n = ∇ψ A. (3.2)

3.3.2.2 Linear Form

The linear form ψ = {(x, y) ∈ R2| y− ax− b = 0} deformed by εn is given by ψ+ εn. We
consider the relation A = cos(ψ). We set in a general way ψ = {(x, y) ∈ R2| y− fψ(x) =
0} the space of ψ with fψ the function describing the bottom. It could be illustrated by
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the figure 3.2.

x

y

ψ

A

ψ + εn

t = 1√
a2+1

(
1
a

)n = 1√
a2+1

(
−a
1

)

P = (0, b)
P′ = P + εn b

a

Figure 3.2 – Illustration of ψ, ψ + εn and A with the function ψ : x → ax + b and A = cos(ψ).

We know the point P(0, b) is contained on the line. The point P′ = P + εn is therefore
contained on the new translated line. We deduce the equation rapidly:

ψ + εn = ax + ε
√

a2 + 1 + b. (3.3)

Let us check the equation (3.10) for A = cos(ψ). On the one hand, we have:

∇ψ A = lim
ε→0

(
1
ε
[A(ψ + εn)− A(ψ)]

)
,

= lim
ε→0

(
1
ε
[cos(ax + ε

√
a2 + 1 + b)− cos(ax + b)]

)
,

= lim
ε→0

1
ε
[cos(ax + b)[cos(ε

√
a2 + 1)︸ ︷︷ ︸

→1−ε2(a2+1)

−1]− sin(ax + b) sin(ε
√

a2 + 1)︸ ︷︷ ︸
→ε
√

a2+1)

]

 ,

= lim
ε→0

− cos(ax + b)ε(a2 + 1)︸ ︷︷ ︸
→0

− sin(ax + b)
√

a2 + 1

 ,

= − sin(ψ)
√

a2 + 1.
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On the other hand, we have:

∇X A = − sin(ψ)∇Xψ = − sin(ψ)
(
−a
1

)
, (3.4)

and therefore:

∇X A.n = − sin(ψ)√
a2 + 1

(
−a
1

)(
−a
1

)
= − sin(ψ)

(a2 + 1)√
a2 + 1

= − sin(ψ)
√

a2 + 1. (3.5)

The equality: ∇ψ A = ∇X A.n is still verified.

3.3.3 Numerical Validation

The approximation (3.10) can be verified by calculating numerically the solution of
the analytical example presented in the section 3.3.2.2. We calculate the error L2 named
EL2 =||(∇ψH)exact − (∇ψH)numerical||L2 for points which correspond to the spatial steps
dx = [10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100] for a length L = 1000 m. We obtain the
curves in figure 3.3.

Figure 3.3 – A) Calculation of ∇ψ H using Hadamard approximation with the following problem (see 3.3.2.2): ψ = ax + b,
H = cos(ψ), with a = 0.02, b = −2. B) L2 error and order of convergence for a comparison between the analytical solution
of the simple problem described in 3.3.2.2 with H = cos(ψ).

We notice that the approximation becomes good very quickly. On the figure 3.3.A,
we see that an increment dx = 20 m is enough to reach an almost perfect approximation.
The figure 3.3.B shows that the error is very small and converges to the order O(dx1/2).
The sources of error for this calculation could be a) the approximation in the calculation
of the vector n (in this case, it is null because ψ is linear), b) the computation of the
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gradient by finite differences (order 1).

3.3.4 Validating the Hadamard Solution

Historically, the OptiMorph model used the shoaling equation equations (1.2a) and
(1.2b) and was based on the analytical differentiation of this equation (section 3.2.1).
The Hadamard strategy allows us to obtain a calculation of ∇ψH in a numerical way, as
with finite differences. To implement this approach practically, we simply need to use the

equation (3.10) with: ∇X H =

(
∂H
∂x
∂H
∂ψ

)
and n = 1√

dψ2+dx2

(
−dψ

dx

)
and we obtain:

∇ψH ≈ ∂H
∂x

nx +
∂H
∂ψ

nz, (3.6)

with nx and nz the x and z component of n. In OptiMorph, we implement equation (3.6)
and we compare the calculations of ∇ψH using the simple shoaling model presented in
equations (1.2a) and (1.2b). The figure 3.4 shows a comparison of the Hadamard and
exact solutions on a representative example: an offshore wave level H0 = 2 m, an offshore
water depth h0 = 10 m, a wave period T0 = 10 s and a linear bottom profile ψ. The
figure 3.4.A corresponds to a simple case and the figure 3.4.B to a case with small scales
perturbations of the sea bottom.
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Figure 3.4 – Comparison of numerical and analytical solution of ∇ψ H using OptiMorph model. Configuration without (A)
/ with (B) perturbations, H0 = 2 m, h0 = 10 m and the wave period T0 = 10 s. In dodgerblue, the wave height H, in brown
the bottom profile ψ, in red ∇ψ H calculated analytically, in blue ∇ψ H calculated by Hadamard strategy.

We notice that the approximation is very good. There is still one point that has a
defect in the non-linearity at x = 670 m. However, this does not alter the morphodynamic
results. To be sure of the robustness, we add non-linearity with a random function
that induces perturbations. These are composed of sinusoidal functions and random
translations between [−0.2, 0.2], on the entire domain. We also set a hole at x = 650 m.
We obtain the simulation figure 3.4.B. Even with all these perturbations, the Hadamard
approximation remains very robust.

3.4 AApplication of Hadamard Strategy

To go further, we can use the Hadamard strategy to couple any wave model to the
morphodynamic model based on the gradient descent equation presented in (1.9). The
figure 3.5 shows the detailed implementation of this coupling.
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Figure 3.5 – OptiMorph workflow coupled with wave model.

Note that in all cases, it is necessary to calculate an averaged H to use it in the
morphodynamic calculation. For spectral models such as SWAN and XBeach, this H is
output directly from the model. However, wave-resolved models such as Shallow-Water
(section 2.4.3) outputs a η. To integrate this quantity into the model, it must be averaged
as a ηRMS with

ηRMS =

√
1

k T0

∫ k T0

0
η2 dt, k ∈N (3.7)

and T0 the wave period. In this case, we have ηRMS ∼ H provided that k is sufficiently
large.

In this section, we perform Hadamard morphodynamics simulations forced by three
distinct hydrostatic models: our extended shoaling model presented in section 2.3.4,
SWAN and XBeach. Simulations are performed on 5 different experimental data sets:
(i) one configuration from the SANDS experience (Eichentopf et al. 2018); (ii) one con-
figuration from the LIP 11D experience flume experiment presented in table S.6 (part of
the XBeach benchmark (Roelvink et al. 1995b)); (iii) three from open-sea configurations
with linear, concave and convex bottom profiles.

3.4.1 Description of Flumes Experiments

In this section, we briefly present the LIP 11D (Roelvink et al. 1995b) and SANDS
(Eichentopf et al. 2018) experiments. These morphodynamic experiments are necessary
to validate our model. It should be noted that there are uncertainties in these two
experiments, but these have not been quantified.

3.4.1.1 The SANDS Experiments

The experimental setup for this study was conducted at the Canal d’Investigació i
Experimentació Marítima (CIEM), a large-scale wave flume located within the Universitat
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Politècnica de Catalunya (UPC) in Barcelona, Spain. The CIEM is a large-scale wave
flume of 100 m length, 3 m width and 4.5 m depth with a working water depth of 2.47 m
and 2.5 m. Waves were generated using a hydraulic wave paddle positioned at the end of
the deep-water section in the wave flume. The initial beach profile was carefully crafted by
hand using well-sorted, commercial sand with a narrow grain size distribution (d50 = 0.25
mm, d10 = 0.154 mm, d90 = 0.372 mm), resulting in a measured sediment fall velocity
of ws = 0.034 m/s. The active portion of the beach profile featured a slope of 1/15.
The experimental configuration of the SANDS project in Barcelona was meticulously
documented in (Alsina et al. 2011).

This experiment (Eichentopf et al. 2018) is composed of two parts, an erosive part
on a linear beach with slopes 1/15 with a forcing of Hs = 0.53 m and T0 = 4.14 s for
an experiment duration of 23 hours and 30 minutes. An accretionary part on the final
beach profile of the erosive section, with a forcing of Hs = 0.32 m and T0 = 5.44 s for an
experiment duration of 20 hours and 25 minutes.

3.4.1.2 The LIP Experiments

The Large Installations Plan (LIP) experiments were conducted in the Delta Flume
of Delft Hydraulics (now Deltares) (Roelvink et al. 1995b), which is a large-scale facility
measuring 225 x 7 x 5 m. During these experiments, various parameters such as water
levels, wave-averaged velocity and suspended concentration profiles, orbital velocities, and
bed levels were measured.

Three types of experiments were carried out in LIP under different types of irregular
waves, resulting in three distinct beach states: stable (LIP 1A), erosive (LIP 1B), and
accretive (LIP 1C).

In LIP 1A, the initial profile was linear with a slope of 1/30 and a median grain size
of 0.22 mm. This part of the experiment represented a pre-storm event with the creation
of a sedimentary bar under moderate wave conditions (Hs = 0.9 m, T0 = 5 s).

The LIP 1B part of the experiment used the final profile from LIP 1A and represented
a storm event with larger waves (Hs = 1.4 m, T0 = 5 s). The bar moves seaward under
the action of large waves, highlighting the physical process of erosion.

Finally, the LIP 1C part of the experiment used the final profile from LIP 1B and
represented a post-storm event with smaller waves (Hs = 0.6 m, T0 = 8 s). The bar moved
back towards the coast asymmetrically, highlighting the physical process of accretion.

The bed profile was measured using a profile follower that used an automated sound-
ing system. The LIP experiments provided valuable insights into the morphodynamic
behaviour of sandy beaches under different wave conditions and have been widely used to
validate numerical models of beach morphodynamics.
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3.4.2 Hydro-Morphodynamic Results on Flume Experiment

To begin, we perform hydro-morphodynamic simulations with our morphodynamic
approach using Hadamard’s calculation of ∇ψH. To highlight the phenomenological as-
pect of our model, we start by performing simulations on SANDS erosive experience
(Eichentopf et al. 2018).

In this case, we set up the models as follows. We set a domain Ω of 53 m in length with
a uniform subdivision of 530 cells. For XBeach and SWAN, the incoming wave boundary
condition is provided using a JONSWAP wave spectrum (Hasselmann et al. 1973), with
a significant wave height of Hs = 0.53 m and a peak frequency at fp = 4.14 s−1. For the
extended shoaling model (section 2.3.4), we use directly Hs and a wave period T0 = 4.14
s. The breaker model of XBeach uses the Roelvink (1993) formulation, with a breaker
coefficient of γ = 0.4, a power n = 15, and a wave dissipation coefficient of 0.5. The
breaker model of SWAN is based on the Battjes et al. (1978) breaking parametrization
and the extended Shoaling model is simply based on a Munk breaking criterion γ = 0.4.
The mobility parameter Υ of our morphodynamic model has a value of 5× 10−3 m.s.kg−1.
The model is set to run 23.5 h using a coupling time of 42.3 s. We compare the numerical
results to those experimental data. The hydro-morphodynamic results are presented in
figure 3.6.A and the differences between the final bottom profile ψ f and initial bottom
profile ψ0 are presented in figure 3.6.B. The reference is the experimental curve in dark
red.
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Figure 3.6 – A) Hydro-Morphodynamic results obtained with OptiMorph model using Hadamard strategy with wave models
(Shoaling (green), SWAN (red) and XBeach (blue)). Bottom profile configuration from the SANDS erosive experience.
Black: bottom profile, green: H and ψ from improved shoaling with Hadamard strategy, red: H and ψ from SWAN with
Hadamard strategy, blue: H and ψ from XBeach with Hadamard strategy, dark red: ψ from experience. B) Morphodynamic
ecarts of ψ f −ψi obtained with the Shoaling, SWAN, XBeach models and experiment. Bottom profile configuration from the
SANDS channel experiment. In green: morphodynamic differences from shoaling with Hadamard strategy (RMSEψ = 11.7
cm), red: morphodynamic differences from SWAN with Hadamard strategy (RMSEψ = 12.7 cm), blue: morphodynamic
differences from XBeach with Hadamard strategy (RMSEψ = 13.5 cm), dark red: morphodynamic differences from the
experiment.

In all three simulations and the experiment, a sedimentary bar is created over time
and a trough is formed between the sandbar and the shore. These sedimentary bars are
positioned below the breaking point of the wave. The sedimentary bars from the simula-
tions have one main hump, whereas in the experiment there are two. In the simulations,
the trough rises once the water has touched the shore (x = 1 m), while in the experiment,
the trough continues afterwards (up to x = 7 m). The three simulations produce relatively
similar results.

The next simulation from LIP - 1C flume experiment (Roelvink et al. 1995b). In this
other case, we set a domain Ω of 180 m in length with a uniform subdivision of 180
cells. For XBeach and SWAN, the incoming wave boundary condition is provided using
a JONSWAP wave spectrum (Hasselmann et al. 1973), with a significant wave height
of Hs = 0.6 m and a peak frequency at fp = 8 s−1. For the extended shoaling model
(section 2.3.4), we use directly Hs and a wave period T0 = 8 s. The breaker model of
XBeach, SWAN and extended Shoaling model are the same as in the previous simulation
(still with γ = 0.4). The mobility parameter Υ of our morphodynamic model has a value
of 5× 10−3 m.s.kg−1. The model is set to run 13 h using a coupling time of 46.8 s.

We compare the numerical results to those experimental data. The hydro-morphodynamic
results are presented in figure 3.7.A and the differences between the final bottom profile
ψ f and initial bottom profile ψ0 are presented in figure 3.7.B. The reference is the exper-
imental curve in dark red.
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In this experiment, the outer sedimentary bar is moving towards the coast. None of
the simulations reproduces this behaviour: the outer bars remain in the same place (x =
120 m). In the experiment, the inner sediment bar grows (x = 140 m). Simulations show
very similar behaviour. The three simulations produce relatively similar results.

3.4.3 Hydro-Morphodynamic Results on Open-sea Configurations

In this section, we perform simulations in open-sea configurations in the same way
as the section 2.5.6.2 of the chapter 2, on beach profiles at in situ scale. The bottom
profiles are linear, concave and convex shapes. These shapes are not directly observable
in nature but representative of several typical settings (dissipative, reflexive). Forth, they
allow to observe if the morphodynamic model is able to reproduce the phenomenology of
sedimentary evolution of sand beaches. For these cases, we perform our morphodynamic
model using waves from SWAN, XBeach, extended Shoaling and Shallow-Water models.

In this configuration, we use the same model settings as before with the exception of a
Ω domain length resized at 600 m with a uniform subdivision in 600 cells. The forcing is
no longer uniform but represents a storm event of 3 days with a peak wave height Hs=2
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m. The waves have a period of T0 = 12 s and the water depth at x = 0 is h0 = 20 m. The
coupling time is set to 345 s. For the Shallow-Water model, the resolution is described in
(Marche et al. 2007). ηRMS starts to be calculated after 10 simulated wave periods (10
T0, here 120 s). Then, ηRMS (defined in equation (3.7)) is averaged over 8 wave periods
(k = 8). The results of these simulations are presented in figure 3.8.
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In all three cases of direct Hs calculation, the simulations produce very similar results.
Depending on the angle of the slope, a sedimentary bar is observed more or less far from
the shore. For a steep angle (convex beach), the sediment bar is very close to the shore;
whereas for a slight angle (concave beach), the bar is further from the shore. All these
sedimentary bars are all followed by a trough and are positioned below the breaking point
of the wave. In the case of a convex profile, the sediment bar and the wave breaking,
produced using SWAN, are closer to shore than the other two simulations.

In the case of the Shallow-Water model, the results are quite different: the sedimentary
bar is larger, further from the shore and has a larger trough.
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3.5 DDiscussion

3.5.1 Computation Time

This section is devoted to the analysis of simulation times of the wave models and our
morphodynamic calculation. Table 3.1 corresponds to the computation times for the LIP
11D - 1C simulations (section 3.4.2) with Hadamard strategy using the SWAN, XBeach
and extended Shoaling models. XBeach was used for providing wave calculation only
but this model also calculates the circulation. Therefore, it was necessary to run it over
a longer time than that required by morphodynamics to get the right significant wave
height Hs.

Hydrodynamic Morphodynamic by
gradient descentSimulation with 180 points Shoaling SWAN XBeach

Computation time for 1 iteration (s) 0.004 0.278 7.372 0.012
Total computation time for 1000 iterations (mins) 0.26 4.83 123.06 0.2

Table 3.1 – Computation time with 180 points calculated: LIP11D - 1C with different wave models. Simulations made with
a 2.4 GHz computer using a single core on an Intel Xeon E5-2680 processor.

We notice that the calculation time of the Shoaling model is very small (direct cal-
culation in python); it is 50 times smaller than that of SWAN and XBeach. XBeach
calculation times come from the circulation model, which has the advantage of giving the
current u (contrary to SWAN) and could be used for another definition of J functional.
The morphodynamic calculation time is very small and negligible compared to the hydro-
dynamic (except shoaling). By increasing the mesh size to 1000 points (5 times more),
we obtain the table 3.2.

Hydrodynamic Morphodynamic by
gradient descentSimulation with 600 points Shoaling SWAN XBeach

Computation time for 1 iteration (s) 0.013 0.7158 17.243 0.044
Total computation for with 1000 iterations (mins) 0.966 12.67 288.12 0.762

Table 3.2 – Computation time with 600 points calculated with different wave models. Simulations made with a 2.4 GHz
computer using a single core on an Intel Xeon E5-2680 processor.

The calculation times are also multiplied by 3. The computation time of the Shallow-
Water model (presented in section 2.4.3) has not been shown as it is necessary to solve
the model a very large number of iterations (corresponding to the simulation time of k T0

from equation (3.7)) in order to perform a single descent iteration. This entire simulation
therefore takes about half a day.
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To save computing time, we could use some interpolation strategy between the grid of
the wave tool and that of the morphodynamic model. This would allow performing wave
computations on grids with fewer points with the same final results.

3.5.2 Flume Simulation

This section is devoted to the morphodynamic behaviour of our model using the
Hadamard strategy on flume configuration (Roelvink et al. 1995b; Eichentopf et al. 2018).
The main question is to check whether the numerical model is capable of reproducing the
morphodynamic behaviours measured experimentally.

For both LIP and SANDS, a first observation stands out. Small differences (in wave
height) in small areas induce different morphodynamic displacements. Then at the next
iteration, the bottom is different so the wave heights become increasingly different. After
+1000 iterations, the feedback loop with small differences can create very different profiles.
This explains why results can differ from one hydrodynamic model to another.

In the SANDS results shown in figure 3.6, we can see that a sediment bar is created
from a linear beach profile (1/15). Although the simulations do not reproduce the sedi-
mentary bar exactly like the experiment, they show very similar results. The sedimentary
bar in the simulations is much shorter (in the sense of x) than in the experiment. In the
simulations, the pattern of troughs between the sediment bar and the shoreline is very
similar to that in the experiment. However, in the experiment, the trough goes beyond
the water level. This result cannot be observed in our model (except with a tide) as there
is currently no mechanism to model this erosion beyond the water level. This induces
errors in our model, which conserves the quantity of sand. This lack of sand could explain
why our sedimentary bar is shorter than the experimental one.

In the LIP 1C results shown in figure 3.7, we notice that two main sandbars are
observed. The inner one (x= 140 m) seems to grow. The outer one (x= 120 m) moves
to the shore. The 3 simulations based on Hadamard strategy succeeded in reproducing
the behaviour of the inner bar (x = 140 m). XBeach model coupled to OptiMorph (blue)
overestimates this sandbar and SWAN model coupled to OptiMorph (red) underestimates
it. On this bar, there is a consequent loss of energy which induces a strong gradient and
allows the bar to grow. However, none of the simulations has succeeded in reproducing
the behaviour of the outer bar (x = 120 m) moving towards the shore.

This is because, the parameterization of the sea bottom ψ and equation (1.9) describing
its dynamics only accounts for vertical variations using the gradient of the functional with
respect to the sea bottom shape. Therefore, no lateral translation can be predicted by this
model. To be able to account for lateral displacements, we need to introduce transport
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mechanisms, though, for instance, the following modification of the model:{
ψt = Υ Λ d−V∇sψ

ψ(t = 0) = ψ0
, (3.8)

where we have introduced a transport operator in the right-hand side. ∇sψ is the spatial
derivative of ψ along the mean slope of the sea bottom and V the velocity along this
direction. We show the behaviour of the model using the following expression of V
involving, the amplitude of orbital velocity at bottom Ub (Wiberg et al. 2008), and the
significant wave height H:

V = 0.01 Ub

(
H

Hmax

)p
with Ub =

H π

T0 sinh (kh)
. (3.9)

The dimensionless morphodynamic factor 0.01 has been chosen in order to make the
ranges of lateral and vertical variations comparable.

Figure 3.9.A illustrates the behaviour of this model for different p values. The best
choice appears to be p = 1 and as expected, the bar moves back towards the coast (asym-
metrically) under smaller waves which shows that transport mechanisms were necessary.
Velocity distribution figure 3.9.B shows that the transport mechanisms are mainly located
around the two sandbars.

To go farther, and to make the approach generic, we should express this velocity V
using the gradient of the functional as done for the vertical motion using the gradient of
the functional with respect to the shape.
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Figure 3.9 – A) Morphodynamic results by the OptiMorph model augmented by the transport mechanisms for p = 0, 1, 2
and the XBeach wave model, for the LIP 1C channel experiment. B) Velocity distribution for p = 1.

By comparing with hydro-morphodynamic models in the literature such as XBeach
(Roelvink et al. 2009), we notice in figure 3.10 that for similar simulations (from the same
benchmark),
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Figure 3.10 – Figure from (Roelvink et al. 2009): Measured and modeled bed level (with XBeach) after 1, 2, 4 and 8 h of
wave action, for a water level of 4.56 m above the flume bottom.

XBeach did not reproduce the morphodynamic behavior of the first sandbar. Indeed,
this one collapses whereas it should move towards the shore. However, the shoreline
displacement are very good reproduced by XBeach. In fact, it is specified that XBeach
is not a model that is supposed to reproduce the behavior of the bars but rather that of
the troughs at the shoreline.

3.5.3 Open-Sea Simulation

This section is devoted to the morphodynamic behaviour of our model using the
Hadamard strategy on open-sea configuration. The two simulations figures 3.6 and 3.8,
shows that there is a creation of the sandbar at the wave breaking point. Figure 3.8 shows
that a slight pit is created before the sandbar and a trough one after. These observations
are providing because they represent the major morphological features along a typical
sand bar profiles. Indeed, it is common to observe sedimentary bars at the wave breaking
point. Moreover, the steeper the slope (convex), the later the breaking, the closer the
sandbar is to the shore (x = 550 m). Conversely, the gentler the slope (concave), the
farther the breaking point, the farther the sandbar is from shore (x = 350 m). These
types of beach profiles are usually observed in nature (Wright et al. 1984). It highlights
the fact that even with an unrealistic initial beach profiles, the model can produce a real-
istic beach profile without any need in pre-nucleation of the bottom perturbation. Forth,
whatever the physics behind the wave spectral model, the morphodynamic model is able
to produce very similar morphodynamic results. On the other hand, the results produced
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by the Shallow-Water model are quite different, but no less realistic.

3.5.4 Gamma Sensibility

To highlight the creation of sandbars at the wave breaking point, we artificially change
the breaking point by varying the Munk (1949) criterion γ on hydro-morphodynamic
simulations using Hadamard strategy. These simulations are performed with the SWAN
wave model (Booij et al. 1996; Reniers et al. 2022) and the same wave parameters as the
simulation 3.4.3 (T0 = 12 s and H0 = 2 m). By taking the Munk (1949) criteria at the
values 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, we obtain the figure 3.11.
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Figure 3.11 – Hydro-morphodynamic results with different breaking criterion γ - Simulation with OptiMorph (Hadamard
strategy) using SWAN model - H0 = 2 m, T0 = 12 s, h0 = 20 m.

The figure 3.11 shows that the sandbars are formed systematically at the wave breaking
point. The higher the coefficient γ, the closer to the coast the waves break and the closer
the sandbar is to the coast. Moreover, troughs at the lee side of the sandbar like observed
in the nature are systematically nucleated (Wright et al. 1984).

3.5.5 Limitations linked to the use of a Shallow-Water model

Coupling our morphodynamic model with a wave resolving model has many limita-
tions. The first is that computation times are much longer, as shown in the section 3.5.1.
Secondly, for certain models in this family, such as the Shallow-Water model, it’s much
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harder to get a breaking. Under certain conditions, these models have so much numerical
dissipation that they do not mark the breaking. This is the case with our Shallow-Water
model, taking a domain of Ω = 600 m and a medium beach slope as shown in figure
3.12.B. Furthermore, we note that ηRMS is very far from the other wave models.
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The previous section 3.5.4 shows that it is necessary to have a well-marked breaking
in order to have a realistic morphodynamic response. In the case of a steep slope (figure
3.12.A), it is possible to have a marked breaking and therefore a coherent morphodynamic
response. ηRMS is also quite close to the other wave heights. Once again, we notice that
our model is conditioned by wave breaking.

3.6 CConclusion

In this chapter, we have described the Hamadard strategy that we have applied to
our model. Using this approach, we calculate an approximation of the gradient ∇ψJ of
the functional J with respect to the shape ψ without any additional wave calculation.
This study allows us to differentiate any functional J according to any input variable
and relating to any wave model. The analytical and numerical comparisons performed
prove that Hadamard strategy is accurate and robust. We applied this tool to realistic
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and idealized hydro-morphodynamic simulations. This strategy is very powerful, as it
can be applied to any shape optimization problem. The morphodynamic results with
SANDS (Eichentopf et al. 2018) are very encouraging because they succeed in reproducing
the dynamics of the dominant sedimentary bar. However, the initial results on LIP 1C
(Roelvink et al. 1995b) failed to reproduce the displacement of the outer sedimentary
bar, although the behaviour of the inner was well reproduced. The model still needs to
be improved in order to fix the lateral displacement and erosion above the water level.
Nevertheless, our model is of low-complexity and reproduces the phenomenology as shown
by the open-sea and SANDS results where it creates a bar at the breaking point without
the need of a priori nucleation or pre-location of the bar.

• A morphodynamic model by minimization that can be coupled with any wave model.

• Encouraging results on known morphodynamic benchmarks and open-sea configu-
rations.

• An encouraging lead for lateral displacement.

• Reproduces certain natural coastal mechanisms (sandbars, erosion, ), our model is
able to create realistic beaches with a bar at the breakpoint, starting from scratch.

• Hadamard is a new approach which allows obtaining easily and robustly ∇ψJ . It
can be used for general shape optimization.

Chapter key points
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Extending the OptiMorph model in 2D

In the last chapter, we have found a strategy to couple our morphodynamic
models with any wave model capable of producing time/spectral averaged wave
quantities. We integrated wave calculations from SWAN, XBeach and Shallow-
Water into our model, and compared the morphodynamic results with 1D hydro-
morphodynamic references from LIP and SANDS, as well as with open-ocean con-
figurations. In this chapter, we develop the 2D model in a straightforward man-
ner. We then carry out morphodynamic simulations reproducing the COPTER
2D basin experiment. Finally, we discuss the sensitivity of the wave model to our
morphodynamic results.
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Chapter 4 – Extending the OptiMorph model in 2D

4.1 IIntroduction

The extension of our morphodynamic model to a higher dimension opens up a much
wider range of applications: from simple simulations on a 1D real seabed to simulations
on 2D more complex seabeds with structures that attenuate wave effects.

Unlike 1D, 2D takes into account a wider range of wave effects. Aspects such as
diffraction, refraction and swell angle must not be neglected. It is therefore important to
couple our morphodynamic model with a powerful hydrodynamic model that can handle
2D effects. Many 2D models handle these 2D effects and are capable of generating av-
eraged water levels (Roelvink et al. 2010; Booij et al. 1996; Kirby et al. 1994). In this
chapter, simulations will mainly be carried out using the REF/DIF: refraction/diffraction
model (Kirby et al. 1994). However, the user is free to use the morphodynamic model
with the hydrodynamic model he prefers.

In numerical, the transition from a 1D to a 2D model is often a tricky step. In fact,
it is often necessary to develop the theory anew and redo the code from scratch. For
example, in finite volumes, it is necessary to rewrite the equation model and all the
numerical schemes, then implement them. In our case, this step has the advantage of
being relatively easy. Indeed, the morphodynamic equation (1.9) has the advantage of
being global and therefore always functional in 2D without change.

In this chapter, we will first see how the model has been extended to dimension 2 and its
validity in 2D. Then, we will then carry out simulations on the Copter basin configuration
in 2D. Finally, we discuss the sensitivity of the wave model to our morphodynamic results.

4.2 UUpgrade OptiMorph Model to 2D

The OptiMorph 2D model will operate in a similar way to the 1D model. It will retain
all its versatility, always being able to be coupled with any 2D hydrodynamic model. In
this thesis, calculations will be performed on simple square grids, although implementation
on triangular grids may be possible in the future. However, this is not the aim of the
thesis.

4.2.1 2D Wave Model

In the previous chapter 3, we demonstrated that the calculation of the gradient ∇ψJ
was possible in 1D using the Hadamard approach. The transition to 2D is described in
section 4.2.3. As a result, any 2D hydrodynamic model can be implemented in our code.
The choice of hydrodynamic model is decisive in obtaining interesting morphodynamic
results. 2D effects such as diffraction and reflection must therefore be taken into account.
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4.2. Upgrade OptiMorph Model to 2D

The REF/DIF models (Kirby et al. 1994) is very well suited to this type of phenomenon.
This model is coupled between a refraction part and a diffraction part. It solves the
mild-slope equation of Berkhoff (1972) and a dissipation equation. It should be noted
that this model provides accurate results for the wave field on bed slopes ranging from 0
to about 1/3. More details on hydrodynamic models are provided in chapter 2, section
2.4.4, including a detailed presentation of the REF/DIF models.

4.2.2 2D Morphodynamic Model

The advantage of a global morphodynamic model makes it usable in any space without
any changes. We recall below the definition of the functional J (J s m−1). For all
t ∈ [0, Tf ], we have:

J (ψ, t) =
1

16

∫ t

t−Tcoupl

∫
Ω

ρwgH2(ψ, x, y, τ)dxdτ, (4.1)

where H denotes the height of the waves over the 2D domain Ω (m2), ρw is water density
(kg m−3), and g is the gravitational acceleration (m s−2). Tcoupl (s) defines the cou-
pling time interval between hydrodynamic and morphodynamic models so that we have
Tf /Tcoupl iterations.

As explained above, the morphodynamic equation (4.2) remains the same,{
ψt = Υ Λ d
ψ(t = 0) = ψ0.

(4.2)

The initial state ψ0 is defined on R2, ψt is the evolution of the bottom elevation over
time (m s−1) (also defined on R2), Υ is a measure of the sand mobility expressed in
m s kg−1 (also defined on R2), Λ measures the excitation of the seabed by the orbital
motion of water waves, and d is the direction of the descent (J s m−2), which indicates the
manner in which the sea bottom changes. In unconstrained configurations, there would
be d = −∇ψJ , which by its definition indicates the direction of a local minimum of J
with respect to ψ as illustrated in figure 1.5 in 1D.

4.2.3 2D Hadamard Derivative

In this section, we explain the calculation of the gradient with respect to the shape
∇ψ, in 2D, in a similar way to the previous chapter 3. On the one hand, we will look at the
mathematical developments. On the other, we will look at the 2D numerical validation,
and thus at the limits of this strategy.
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4.2.3.1 Mathematical Background

The Hadamard strategy introduced in the previous chapter 3 has been written in
multi-dimensional (section 3.3). Using the equation (3.10) with ∇X H =

(
∂H
∂x , ∂H

∂y , ∂H
∂ψ

)⊺
we obtain the new equation:

∇ψH ≈ ∂H
∂x

nx +
∂H
∂y

ny +
∂H
∂ψ

nz (4.3)

with nx, ny and nz the x, y and z component of n. The vector n is calculated on each
component i, j of the grid as the vector product of two non-collinear vectors of the plane
generated by the 3 points associated to (ψi+1,j, ψi,j, ψi,j+1) (see figure 4.3). Then ∇ψJ
is calculated using the equation (3.1) from chapter 3 section 3.2.

4.2.3.2 Numerical Validation

1D numerical validation was carried out in the previous chapter 3 section 3.3.3. The
2D extension does not change the validity of our Hadamard strategy. Two simple 2D
validation cases are shown in figures 4.1 and 4.2. In these cases, we use the simple
shoaling model presented in equations (1.2a). This allows us to directly compare the
analytical solution ∇ψH with the numerical one. In the first case, we assume a linear
seabed. In the second 4.2, we add a bump to induce non-linearity.

Figure 4.1 – OptiMorph 2D using Hadamard with multi-1D simple shoaling models with linear bottom elevation. A) Seabed
and Wave Height B) Superposition of analytical and numerical gradients C) Differences between analytical and numerical
gradients.
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Figure 4.2 – OptiMorph 2D using Hadamard with multi-1D simple shoaling models with linear bottom elevation + geotube.
A) Seabed and Wave Height B) Superposition of analytical and numerical gradients C) Differences between analytical and
numerical gradients.

The results 4.1.C and 4.2.C show that the model is very robust over the whole Ω
domain. However, some difficulties are encountered on the non-linear parts of ψ and H.
This can be explained by the fact that the n normal vectors are often miscalculated in
these parts.

4.2.4 2D Constraints

The two constraints of the model are easily transformed into 2D. The first is the slope
constraint, which ensures that there are no unrealistic slopes in the model. The second
is the sand conservation constraint, which is useful in experimental configurations, for
example.

4.2.4.1 Slope Constraint

The 2D slope constraint becomes slightly more complex than in 1D (equation (1.14)).
In fact, it is necessary to take into account the maximum slope according to x⃗ (red nodes
on figure 4.3), ∣∣∣∣∂ψ

∂x

∣∣∣∣ ≤ Mslope, (4.4)

according to y⃗ (blue nodes on figure 4.3),∣∣∣∣∂ψ

∂y

∣∣∣∣ ≤ Mslope, (4.5)

and also on the diagonals along a⃗ and b⃗ (green nodes on figure 4.3),∣∣∣∣∂ψ

∂a

∣∣∣∣ ≤ Mslope, and
∣∣∣∣∂ψ

∂b

∣∣∣∣ ≤ Mslope. (4.6)
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ψi−1,j−1

ψi,j−1

ψi+1,j−1

ψi−1,j

ψi,j

ψi+1,j

ψi−1,j+1

ψi,j+1

ψi+1,j+1

x⃗
y⃗ a⃗

b⃗

∆y

∆x

∆a = ∆b

Figure 4.3 – Nodes representation.

4.2.4.2 Sand Conservation Constraint

The sand conservation constraint remains the same. The integration of the Ω domain
simply switches from 1D to 2D as illustrated in the following equation (4.7).∫

Ω
ψ(t, x, y)dΩ =

∫
Ω

ψ0(x, y)dΩ, ∀t ∈ [0, Tf ], (4.7)

with ψ the seabed at time t and ψ0 the initial seabed.

4.3 22D Applications

Contrary to the previous chapter, 2D morphodynamic data are very rare. Most 2D
validations are carried out in 1D: LIP, SANDS, Duck, etc. It is therefore difficult to
obtain 2D morphodynamic validation data, so we will use 2D Copter data (Bouchette
2017), whose 1D data were used in the chapter 1. We will then carry out an application
with a linear seabed by adding a geotextile tube as was done in the multi-1D section 1.4
of the chapter 1.

4.3.1 Presentation of the Copter 2D experience

The 2D Copter experiment (Bouchette 2017) has been conducted in the 30 m x 30m
LHF wave basin in Grenoble (see Figure 4.4A) with a length scale of 1/10 and a time
scale 1/3 (obtained with Froude scaling).
The sediment parameters that have been used in the present experiments are as follows:
the density of 2 650 kg/m3 and median diameter d50 = 0.166 mm. This choice leads to
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fulfill a Rouse scaling for a prototype grain size of d50≈0.3 mm.

The beach morphology was measured by means of a laser profiler mounted on a motorized
trolley located on a sliding rail 4.4A). This measurement technique required emptying
the basin before recording the bed elevation. The seabed elevation was recorded with
millimeter accuracy every 10 cm and 1 cm in the alongshore and cross-shore direction,
respectively. As shown in the Figure 4.4A) the bathymetric survey zone was restricted by
the sliding rail configuration and covered the area 7.84 m < x < 22.84 m in the cross-shore
direction, 3.12 m < y < 28.02 m alongshore.
The free surface elevations were measured by means of 18 capacitance gages.

JONSWAP irregular waves were generated over 20mn sequences, repeated several times.
Four typical wave climates are considered:

1. Storm rising: Hs = 0.17 m / T0 = 2.1 s,

2. Storm apex: Hs = 0.23 m / T0 = 2.3 s,

3. Storm waning: Hs = 0.18 m / T0 = 3.5 s,

4. Calm wave conditions: Hs = 0.11 m / T0 = 2 s.

In part 2 (Storm apex), a geotube was added as shown in figure 4.4.

Figure 4.4 – A) Schema of Copter’s 2D configuration. B) Photo of the 2D Copter experiment.
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4.3.2 Application on Copter 2D

To begin, we perform hydro-morphodynamic simulations with our morphodynamic
approach using Hadamard’s calculation of ∇ψJ . To highlight the phenomenological
aspect of our model, we start by performing simulations on Copter 2D seabed.

In this case, we set up the models as follows. We set a domain Ω = 24.9 x 15 m
with a uniform subdivision in x⃗ of 50 cells and uniform subdivision in y⃗ of 50 cells.
For REF/DIF and Shoaling multi-1D models, the incoming wave boundary condition is
Hs = 0.23 m, a wave period T0 = 2.3 s and a wave angle of incidence of 0 degrees, but
this can be changed in REF/DIF. The breaker model of the extended Shoaling model is
simply based on a Munk (1949) breaking criterion γ = 0.78. The mobility parameter Υ of
our morphodynamic model has a value of 4× 10−2 m.s.kg−1. The model is set to run 20
mins using a coupling time of 24 s. We compare in figure 4.5 the results obtained using
the two wave models multi-1D shoaling, REF/DIF and the experimental result.
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Figure 4.5 – (Top) Morphodynamic results using OptiMorph in 2D using the Multi-1D Shoaling model (left), REF/DIF
(center) and comparing with experiments (right). (Bottom) Variability of the transects (in x⃗ direction) with the mean
(black) and standard deviation (gray).

In all three figures, a trough is visible at the rear of the geotube. The variability of
morphodynamic results with the multi-1D Shoaling model and the experiment is much
greater than that of REF/DIF.

4.3.3 Linear Seabed with Geotube

In this case, we set up the models as follows. We set a domain Ω = 600 x 20 m
with a uniform subdivision in x⃗ of 300 cells and uniform subdivision in y⃗ of 60 cells.
For REF/DIF and Shoaling multi-1D models, the incoming wave boundary condition is
H0 = 2 m, a wave period T0 = 6 s and a wave angle of incidence of 0 degrees. The
breaker model is the same as in the previous section. The mobility parameter Υ of our
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morphodynamic model has a value of 4× 10−2 m.s.kg−1. The model is set to run 3 days
using a coupling time of 5184 s.

The initial seabed is linear (see Figure 4.6), with a x⃗ slope of 1/100, with the addition
of a geotextile tube at x = 150 m and a height of 2.5 m.
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Figure 4.6 – Initial seabed with a linear slope of 1/100 with a geotextile tube at x = 150 m.

We compare in figure 4.7 the results obtained using the two hydrodynamic models
shoaling / REF/DIF.
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Figure 4.7 – 2D simulation of OptiMorph using Shoaling and REF/DIF models. Linear seabed (1/100) with geotube.
Offshore height H0 = 2 m and wave period T0 = 6 s.

Here, the hydro-morphodynamic results produced by the two models are completely
different. However, a trough can still be seen behind the geotube. This is much more
pronounced using the multi-1D Shoaling model than using the REF/DIF models. Small
oscillations are observed on the REF/DIF wave model.
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4.4 DDiscussion

In Copter’s 2D configuration (Bouchette 2017), the geotextile tube can be seen as a
sedimentary bar. This leads to the wave breaking prematurely, creating a trough behind
the geotube. The morphodynamic model coupled with multi-1D shoaling or REF/DIF
reproduces this behaviour with the break in the slope behind the structure, as shown in
figure 4.5. This result can also be seen in figure 4.7 and it was also illustrated in the
chapter 1 in the section 1.4, as well as in the results in the chapter 3. For morphodynamic
results with the multi-1D shoaling models (figure 4.5 left), non-linearities are observed be-
tween transects. This is due to the variability between transects (figure 4.5 left/bottom),
as the multi-1D shoaling model calculates the hydrodynamics on each transect without
taking 2D effects into account.

To obtain consistent morphodynamic results, it is very important to choose the asso-
ciated hydrodynamic model carefully. It must be chosen according to the field of study
(type of beach, type of experiment, type of waves, etc.) with the help of specialists. In-
deed, the results of figure 4.7 show that two completely different wave models (multi-1D
shoaling and REF/DIF), produce completely different morphodynamics. For example,
the breaking of the REF/DIF wave model is very steep and therefore induces localised
sediment transport below this wave breaking (justification in the section 3.5.4). This is
in contrast to the multi-1D model, which has a smoother breaking, resulting in greater
sediment movement behind the geotube. This strategy is in line with Murray (2007) who
explains that there is no universal morphodynamic model, and that it is necessary to
choose carefully on a case-by-case basis.

4.5 CConclusion

In this chapter, we looked at the implementation of the OptiMorph 2D model. Due
to the global scale of this model, implementation is very straightforward. The 2D model
is validated in a similar way to the 1D model. An application on the Copter 2D configu-
ration (Bouchette 2017) has been performed. In this case, the geotextile tube acts like a
sedimentary bar and as a result, a trough is formed behind this geotube. The model has
been able to reproduce this behaviour qualitatively. Dealing with complex problems, this
model can therefore be used in coastal engineering involving wave dissipation structures.
However, the choice of the wave model must be made with greater knowledge of the study
case to avoid obtaining inconsistent morphodynamic results. In the future, it will be very
important for users to choose the wave model carefully.
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4.5. Conclusion

• Straightforward implementation of the 2D model.

• Several applications using multi-1D Shoaling and REF/DIF wave models.

• A model capable of managing complex structures on the seabed.

• Morphodynamic sensitivity due to wave models.

Chapter key points
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OptiMorph 2.0 User Guide

In this user guide, we present the new version of the OptiMorph model based on
the coastal hydro-morphodynamics by minimization principle. This morphody-
namic model can be coupled with any hydrodynamic model. We therefore present
how to couple this model with hydrodynamic models such as XBeach or SWAN.
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5.1 IIntroduction

5.1.1 About

The numerical hydro-morphodynamic model presented here embodies a new approach
to coastal morphodynamics, based on optimization theory. The model we present here
follows on from the model presented by Cook et al. (2021a) in his user guide. This one is
also based on the assumption that a sandy seabed evolves over time in order to minimize
a certain wave-related function, the choice of which depends on what is considered the
driving force behind coastal morphodynamics. This numerical model was given the name
OptiMorph, and has the advantages of being fast, robust, and requires very few input
parameters.

The model we present in this user guide is based on the same principles as Cook et al.
(2021a) model. However, this model has been recreated with new enhancements, which
we present in this user guide.
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5.1.2 Expectation and Objectives

The main goal of OptiMorph was to demonstrate the potential of using optimal control
in the modeling of coastal dynamics by designing an adaptable, easy-to-use numerical
model. Our model aims to be generic, fast, robust and easy to use. It is intended to act
as a morphodynamic module that can be coupled with any hydrodynamic model. This
model aims to simulate morphodynamic phenomenology (creation of sedimentary bars)
very well. It could eventually be incorporated into morphodynamic models without this
phenomenological aspect.

5.1.3 Target Audience

The OptiMorph model is a tool intended for any person wishing to simulate the natural
evolution of the coastal seabed in response to the incoming wave conditions, and/or to
study the effect of submerged man-made devices on the sediment transport. It can be
used by engineers seeking an opinion on the morphodynamic aspect of a project; by
students wishing to understand morphodynamic phenomena; by researchers interested
in the creation of sedimentary bars but also by a morphodynamic developer looking to
improve his model.

5.2 PProcesses and Theoretical Formulation

5.2.1 Domain and Definitions

We consider a coordinate system composed of a horizontal axis x and a vertical axis z.
We denote Ω := [0, xmax] the domain of the cross-shore profile of the active coastal zone,
where x = 0 is a fixed point in deep water where no significant change in bottom elevation
can occur, and xmax is an arbitrary point at the shore beyond the shoreline, as shown
by Figure 5.1. The elevation of the sea bottom is a one-dimensional positive function,
defined by: ψ : Ω× [0, Tf ]×Ψ→ R+ where [0, Tf ] is the duration of the simulation (s)
and Ψ is the set of physical parameters describing the characteristics of the beach profile.
In order to model the evolution over time of ψ and given the assumption that ψ changes
over time in response to the energy of shoaling waves, a description of the surface waves
is needed.
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Figure 5.1 – Illustration of the cross-shore profile where breaking occurs once at x = xB.

i Here, we present only part 1D. For the 2D part, the notations are analogous.

5.2.1.1 Tide

In this model, some parameters are time-variable: T0(t), h0(t), H0(t),... The choice
of a temporally variable closure depth h0(t) allows managing the effect of tides. This is
defined as follows:

h0(t) =
Me f f

2
sin
(

2πt
Ttide

)
with Me f f =

CtideMre f

100
(5.1)

with Mre f the reference tidal range (m): for example, in Brest, it is 6.1 m. Me f f the
effective tidal range (m), Ctide the tidal coefficient and Ttide the tide duration (s).

5.2.2 Hydrodynamic Models

Unlike the previous user guide of Optimorph (Cook et al. 2021a), this one will focus
solely on 3 hydrodynamic models. Indeed, numerical advances have enabled us to couple
hydrodynamic models that are well known in the literature. We no longer need to develop
models ourselves. The first is a purely numerical model based on the Munk (1949) cri-
terion: this model enables the code to be tested very quickly. The other two models are
XBeach (Roelvink et al. 2009; Zimmermann et al. 2012; Bugajny et al. 2013; Williams
et al. 2015) and SWAN (Booij et al. 1996).
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5.2.2.1 Extended Shoaling Model

The Shoaling model (Cook 2021) did not succeed to model wave breaking with wave
periods T0 > 2 s. This model was therefore improved to give birth to the extended model
below:

H(x, t) =
{

H0(x, t)KS(x, t) for x ∈ ΩS (5.2a)

F (γh(x, t)) for x ∈ ΩB (5.2b)

Extended Shoaling model

where F is a numerical parameterization function of the breaking define below (5.3):

F (γh(x, t)) = H(xstart) +
[
H(xstop)− H(xstart)

]
· f (

x− xstart

xstop − xstart
) · g( hmax − h

hmax − hmin
)

(5.3)
with x ∈ ΩB = [xstart, xstop], h ∈ [hmin, hmax] and the following notations:

x

H

H

ψ

Hstart

Hstop

xstart xstopΩB

hmin

hmax

Figure 5.2 – Illustration of notations.

Hstart and Hstop are the wave heights at the beginning and end of the breaking on the
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domain ΩB = [xstart, xstop]. The first function f gives an account of the breaking without
taking into account the bed shape. It simply gives the appearance of the breaking. The
second function g takes into account the seabed and interacts with it. Note that if f and
g are the affine functions x 7−→ x, we find the breaking γh(x, t) illustrated on figure 5.2.
We can present below (figure 5.3) some of these functions that set the breaking:

x

y f1

f2

g

Figure 5.3 – Illustration of f1, f2 and g defined in [0, 1] −→ [0, 1].

These functions were chosen to try to capture a natural breaking. They have no physical
meaning.
It is necessary to stipulate that the model will first locate all the ΩB domains and then
apply the equation (5.3) on each of them. The result of this model can be seen in the
figure 5.29.

5.2.2.2 XBeach Model

The XBeach model is a process-based model developed by the Delft University of
Technology. It is a two-dimensional, depth-integrated numerical model that simulates
the hydrodynamics, sediment transport, and morphological changes of coastal systems.
XBeach is a flexible model that can be used to simulate a variety of coastal processes,
including wave breaking, bedload transport, and nearshore morphological changes. The
model is based on the principles of conservation of mass, momentum, and energy and uses
a finite-difference numerical scheme to solve the governing equations. XBeach has been
widely used in coastal studies due to its flexibility and accuracy, and it has been applied
to a wide range of coastal systems, including estuaries, beaches, and coastal wetlands.
The model can be used as a profile model in 1D (Pender et al. 2013), or as an area model
in 2D (McCall et al. 2010), and today, there are three modes in which the hydrodynamics
can be resolved in XBeach, being:

• Stationary – All wave group variations, and thereby all infragravity motions, are
neglected, and only the mean motions are included. This type can be applied for
modeling morphological changes under moderate wave conditions;

• Surfbeat – This in-stationary, hydrostatic mode, is wave group resolving, and is
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hence also applicable when one is interested in the swash zone processes;

• Non-hydrostatic – The non-linear shallow water equations are solved, and hence
individual short-wave propagation and transformation is resolved.

In our case, we will focus on the Stationary mode.

5.2.2.2.1 Hydrodynamics

The wave action balance is solved to obtain the wave forcing:

∂A
∂t

+
∂cx A

∂x
+

∂cy A
∂y

+
∂cθ A

∂θ
= −Dw

σ
(5.4)

Where A is the wave action, C the wave propagation speed (where the subscripts
refer to the x− and y−directions, and θ−space), θ is the angle of incidence, Dw the wave
energy dissipation per directional bin and σ the intrinsic wave frequency. The wave action
as above (5.5) by:

A(x, y, t, θ) =
Sw(x, y, t, θ)

σ(x, y, t)
(5.5)

In which the Sw is the wave energy density per directional bin. The total wave energy
EH is obtained by integration of the wave energy density Sw over all directional bins:

EH =
∫ 2π

0
Sw(x, y, t, θ)dθ (5.6)

The distribution of the total wave energy dissipation D̄w over all directional bins is
calculated proportional to the energy density distribution as follows:

Dw(x, y, t, θ) =
Sw(x, y, t, θ)

Ew(x, y, t)
D̄w(x, y, t) (5.7)

The total wave energy dissipation is calculated using a method described by Roelvink
(1993) as the product of the dissipation per breaking event and the fraction of broken
waves Qb. The energy dissipation per wave breaking event is assumed to take place over
half of the representative wave period Trep, resulting in the following expression for the
total, directionally integrated, wave energy dissipation:

D̄w = α
2

Trep
QbEH (5.8)

Where α is a calibration factor and Ew the total wave energy (Equation (5.6)). The
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fraction of breaking waves Qb is estimated from a Rayleigh distribution (Battjes et al.
1978):

Qb = 1− exp
(
−
(

Hrms

Hmax

)n)
(5.9)

Where the root-mean-square wave height Hrms is calculated from the wave energy EH,
and the maximum wave height Hmax is calculated using the breaker index γ (the ratio
between the breaking wave height and the water depth, usually given the value 0.88).

EH ∼
1
8

ρgH2
rms ⇒ Hrms =

√
8Ew

ρg
, Hmax = γbh (5.10)

This closes the set of equations for the wave action balance (Equation (5.4)). From the
wave energy, the wave-induced radiation stresses can be determined using linear wave
theory. Similar to the wave action balance, a roller balance is solved and coupled to
the wave energy balance, where the wave energy dissipation forms a source of energy in
the roller balance. The roller-induced radiation stress is calculated and together with
the wave-induced radiation stress they are used to calculate the wave forcing: The flows
are calculated using a depth-averaged formulation of the Shallow-Water equations, taking
into account wave-induced mass flux and return flows. This Generalized Lagrangian Mean
(GLM) formulation uses Lagrangian velocities (Andrews et al. 1978):

∂uL

∂t
+ uL ∂uL

∂x
+ vL ∂uL

∂y
− f vL − vh

(
∂2uL

∂x2 +
∂2uL

∂y2

)
=

Tsx

ρh
−

TE
bx

ρh
− g

∂η

∂x
+

Fx

ρh
(5.11a)

∂vL

∂t
+ uL ∂vL

∂x
+ vL ∂vL

∂y
+ f uL − vh

(
∂2vL

∂x2 +
∂2vL

∂y2

)
=

Tsy

ρh
−

TE
by

ρh
− g

∂η

∂y
+

Fy

ρh
(5.11b)

∂η

∂t
+

∂uLh
∂x

+
∂vLh

∂y
= 0 (5.11c)

Where the Lagrangian velocity components (denoted by the superscript L) are the super-
position of the Eulerian velocity and the Stokes’ drift velocity:

uL = uE + uS and vL = vE + vS (5.12)

5.2.2.3 SWAN Model

The SWAN model is a spectral numerical model designed to simulate waves evolving
in coastal regions, lakes, and estuaries under defined wind, bathymetry, and current con-
ditions. It is based on the Energy Density Balance equation (5.5) linking the advection
term to the source and sink terms. Therefore, the wave energy evolves in both geographic
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and spectral space and changes its aspect due to the presence of wind at the surface, fric-
tion with the bottom, or during the breaking of the waves. The SWAN model is a stable
model based on unconditionally stable numerical schemes (implicit schemes). SWAN, in
its third version, is in stationary mode (optionally non-stationary) and is formulated in
Cartesian or spherical coordinates. The unconditional numerical stability of the SWAN
model makes its application more effective in Shallow-Water. In SWAN, the waves are
described with the two-dimensional spectrum of the wave action density A,

A(x, y, σ, θ) =
E(x, y, σ, θ)

σ
(5.13)

where x and y are the horizontal components of geographic space, σ is the relative fre-
quency, θ is the wave direction, and E is the energy density.

The spectrum considered in the SWAN model is that of the wave action density A(σ,
θ ) rather than the spectrum of the energy density E(σ, θ). This is because, in the pres-
ence of currants for the reasons we mentioned above (non-conservation of EH) (Whitham
2011). Because wave action propagates in both geographic and spectral space under the
influence of genesis and dissipation terms, wave characteristics are described in terms
of two-dimensional wave action density. The action density spectrum balance equation
relating the propagation term to the effects of the source and sink terms, in Cartesian
coordinates, is (Hasselmann et al. 1973)

∂A
∂t

+
∂ (Cx A)

∂x
+

∂
(
Cy A

)
∂y

+
∂ (Cσ A)

∂σ
+

∂ (Cθ A)

∂θ
=

S
σ

. (5.14)

On the left-hand side of Equation (5.14), the first term represents the local temporal
variation of the wave action density, the second and third terms represent the propagation
of wave action in the geographical space of velocities Cx and Cy, the fourth term represents
the shifting of the relative frequency due to variations in bathymetry (with propagation
velocity Cσ ) and currents (with propagation velocity Cθ ), and the fifth term represents
the refraction induced by the combined effects of depth and currents. Cx, Cy, Cσ, Cθ

propagation velocities are obtained from linear wave theory. The term in the right-hand
side of Equation (5.14) represents processes that generate, dissipate, or redistribute wave
energy, and S can be expressed as (Lv et al. 2014)

S = Sin + Swc + Sbrk + Sbot + Sn14 + Sn13 (5.15)

where Sin is the wind energy input. The dissipation terms of wave energy is represented
by the contribution of three terms: the white capping Swc, bottom friction Sbot, and
depth induced breaking Sbrk. Sn14 and Sn13 represent quadruplet interaction and triad

141



Chapter 5 – OptiMorph 2.0 User Guide

interactions, respectively.
A finite difference scheme is used for each of the five dimensions: time, geographic

space, and spectral space made the numerical implementation in SWAN effective. The
following guidelines must be followed in order to obtain the discretization adopted at the
SWAN model level for numerical computation:

1. time of a constant and identical time step ∆t for the propagation term and the
source term,

2. geographical space of a rectangular grid with constant spatial steps ∆x and ∆y,

3. spectral space of a constant directional step ∆θ and a constant relative frequency
step ∆σ/σ,

4. frequencies between a fixed minimum maximum values of 0.04 Hz and 1 Hz respec-
tively,

5. the direction θ can also be delimited by the minimum and maximum values θ min
and θmax (as an option).

5.2.3 Morphodynamic Model by Wave Energy Minimization

5.2.3.1 Introduction

The fundamental assumption governing OptiMorph states that the seabed evolves over
time so as to minimize a certain quantity, named cost function. The choice of cost function
depends on what is considered the driving force behind the morphodynamic response to
the seabed. The one we’ve chosen calculates wave energy. In other words, the shape of
the seabed varies in an effort to minimize the energy of the surface waves at that given
time. At each time, the model indicates the direction to a local minimum of the cost
function with regard to the parameterization of the seabed. Two physical parameters
limit or encourage seabed mobility depending on the proprieties of the sediment and
the depth of the water. This optimization problem is subjected to a limited number of
constraints, allowing for a more accurate description of the morphodynamic evolution.
The first concerns the maximal slope of the seabed, the second manages the sand stock
of the profile in the case of an experimental flume.

The optimization problem that OptiMorph seeks to solve is:
For each t ∈ [0, T], find the shape ψ of the seabed such that the cost function J is minimal,
while subjected to constraints.

The J calculation is performed using a hydrodynamic model selected from those
presented here.
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5.2.3.2 Governing Equation of Seabed Dynamics

The evolution of the sea bottom is assumed to be driven by the minimization of a cost
function J (J s m−1) with the following gradient descent taking the initial sea bottom
ψ0, {

ψt( . , t) = Υ Λ d( . , t)
ψ( . , 0) = ψ0( . ).

(5.16)

where ψt is the evolution of the bottom elevation over time (m s−1), Υ is a measure
of the sand mobility expressed in m s kg−1, Λ measures the excitation of the seabed
by the orbital motion of water waves, and d is the direction of the descent (J s m−2),
which indicates the manner in which the sea bottom changes. This approach uses two
parameters and two constraints.

5.2.3.3 Parameter Υ

The first parameter Υ takes into account the physical characteristics of the sand and
represents the mobility of the sediment. Simulations with varying Υ that reflect variations
of the d50 grain diameter from 0.25 mm to 2 mm were performed. Changes in the beach
profile were observed but no significant alteration of the trends in beach profile evolution
through time. The asymptotic behavior of the simulations remains the same although
the velocity at which a given profile is reached changes. This parameter is explained in
chapter 1 section 1.2.3.1. For Υ great, as is the case with finer particles, the seabed may
be submitted to significant change. For Υ close to zero, little mobility is observed.

5.2.3.4 Parameter Λ

The first constraint Υ takes into account the physical characteristics of the sand and
represents the mobility of the sediment. The second parameter Λ is a local function which
represents the influence of the relative water depth kh on the beach profile dynamics
and is defined after the term describing the vertical attenuation of the velocity potential
according to linear wave theory (Soulsby 1987):

φ : Ω× [0, h0] −→ R+

(x, z) 7−→ cosh(k(x)(h(x)− (h0 − z)))
cosh(k(x)h(x))

.

(5.17)

An illustration of the orbital velocity of the wave particles is given in figure 5.4. This
function describes the excitation of the water particles for a given location along the
cross-shore profile and a given water depth. However, our interest lies in the excitation of
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the seabed by the surface waves. Therefore, it is natural to consider the orbital damping
function at z = ψ(x). The parameter Λ of equation (5.16) is therefore defined by:

Λ(x) = φ(x, ψ(x)) =
1

cosh(k(x)h(x))
(5.18)

Figure 5.4 – Illustration of the orbital velocity over the cross-shore profile from (Cook 2021).

This parameter governs the manner in which the waves affect the seabed. In deeper
waves, the surface waves have little to no effect on the seabed below. No movement should
be observed of the seabed, and thus Λ ≈ 0 over this portion of the cross-shore profile.
When the waves have a large impact on the seabed, e.g. at the coast, greater movement
can be observed and as such we set Λ ≈ 1. An illustration of Λ is given in figure 5.4.

Figure 5.5 – Variation of the parameter Λ over the cross-shore profile from (Cook 2021).

5.2.3.5 Direction of Descent d

d is the direction of the descent (J s m−2), which indicates the manner in which the
sea bottom changes. In unconstrained configurations, there would be d = −∇ψJ , which
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by its definition indicates the direction of a local minimum of J with respect to ψ as
illustrated on figure 5.6.

Figure 5.6 – Illustration of gradient descent with ψ ≤ α. The optimum does not necessarily correspond to the critical point
∇ψJ = 0.

The tricky step will be to obtain this quantity ∇ψJ : this is explained in the section
5.2.3.7 with Hadamard’s derivation.

5.2.3.6 Choice of Cost Function J

The shape of the beach profile is determined by the minimization of the potential
energy of waves, for all t ∈ [0, Tf ]:

J (ψ, t) =
1

16

∫ t

t−Tcoupl

∫
ΩS

ρwgH2(ψ, x, τ)dxdτ (5.19)

where H denotes the height of the waves over the cross-shore profile (m), ρw is water
density (kg m−3), and g is the gravitational acceleration (m s−2). Tcoupl (s) defines the
coupling time interval between hydrodynamic and morphodynamic models so that we
have Tf /Tcoupl iterations.
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5.2.3.7 Hadamard Derivative to Compute ∇ψJ

We use the approximation described in (Hadamard 1914; Mohammadi 2007; Moham-
madi 2010). We consider ∇ψJ in the sense of Hadamard following the definition:

∇ψJ = lim
ε→0

J (ψ + εn)−J (ψ)

ε
, (5.20)

where n is the normal to the shape ψ. This can be seen as applying a Gâteaux (1913)
derivation in the direction normal to the shape. The principle is illustrated in figure 5.7.

ε.n

ψ + ε.n ψ

z

x

Figure 5.7 – Representation of two sea bottom profiles ψ and ψ + εn. To calculate the gradient, we need to calculate at all
points the associated normal vector n.

Using the Taylor-Young formula at order 1, we consider the following approximation:

∇ψJ = lim
ε→0

J (ψ) + ε∇XJ .n−J (ψ)

ε
,

≈ (∇XJ ).n,
(5.21)

with X = (x , z)⊺. To implement this approach practically, we simply need to use the

equation (5.21) with: ∇XJ =

(
∂J
∂x
∂J
∂ψ

)
and n = 1√

dψ2+dx2

(
−dψ

dx

)
and we obtain:

∇ψJ ≈
∂J
∂x

nx +
∂J
∂ψ

nz, (5.22)

with nx and nz the x and z component of n. ∂J
∂x and ∂J

∂ψ are calculated using finite differ-
ences. The ∆ψ quantity can sometimes be almost zero, depending on the configuration
of the sea bottom. To avoid code explosions, we use a slope limiter.
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5.2.3.8 Slope Limiter

A slope limiter was introduced in Hadamard differentiation, and helps maintain stable
code. This is based on the following algorithm.

Algorithm 1 A slope limiter
Input: y is the vector to limit, n the size of y, nx the maximum limitation window, often

nx=20
Output: y without degeneration
1: error ← 1
2: for ∆x=1,nx do
3: y0 ← y
4: for i=∆x,n− ∆x do
5: ymin ← min (y0[i− ∆x], y0[i + ∆x])
6: ymax ← max(y0[i− ∆x], y0[i + ∆x])
7: y[i]← max[min (y0[i], ymax), ymin]
8: end for
9: error0 ← error

10: error ← ||y− y0||
11: if ∆x = 1 then
12: e0 ← error
13: end if
14: error ← error

e0
15: if ∆x > 1 and error > error0 then
16: y← y0
17: break
18: end if
19: end for

This limiter is applied every time differentiation is calculated in Hadamard. This
limiter is very effective, as shown in the figure 5.8.
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Figure 5.8 – Slope limiter applied to a curve disturbed by heavisides functions.

5.2.4 Model Constraints

In the interest of simplicity, we have adopted two physical constraints though more
can be introduced if necessary.

5.2.4.1 Slope Constraint

The first concerns the local slope of the bottom. Depending on the composition of the
sediment, the bottom slope is bounded by a grain-dependent threshold Mslope (Dean et al.
2004). This is conveyed by the following constraint on the local bottom slope illustrated
by 5.9: ∣∣∣∣∂ψ

∂x

∣∣∣∣ ≤ Mslope. (5.23)

The dimensionless parameter Mslope represents the critical angle of repose of the sediment.
This angle is based on observed angles in natural beach environments, which are often
between 0.01 and 0.2 (Bascom 1951; Vos et al. 2020; Short 1996). We have considered
the observed critical angle of 0.2.
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5.2.4.2 Sand Stock Constraint

A second constraint concerns the sand stock in the case of an experimental flume. In
a flume, the quantity of sand must be constant over time, as given by (5.24), contrarily
to an open-sea configuration where sand can be transported between the nearshore zone
and a domain beyond the closure water depth where sediment is definitely lost for beach
morphodynamics (Hattori et al. 1980; Quick 1991). This constraint can be written as :∫

Ω
ψ(t, x)dx =

∫
Ω

ψ0(x)dx ∀t ∈ [0, Tf ]. (5.24)

This constraint is necessary for verifying and validating the numerical model with the
wave flume experimental data.

Figure 5.9 – Slope constraint (5.23) from (Cook 2021). Figure 5.10 – Sand conservation (5.24) from (Cook 2021).

5.2.4.2.1 Numerical implementation of projections

For the numerical implementation, we introduce a new quantity Csand. For a given
time t ∈ [0, Tf ], Csand(t) is a difference between the current and the initial sand stock,
weighted by ψ:

Csand(t) =
∫

Ω
(ψ− ψ0)

2dΩ. (5.25)

To have a sand conservation (equation (5.24) and figure 5.10), we must have Csand(t) =
0. The minimization problem then becomes:

For each t ∈ [0, T], find the shape ψ of the seabed such that the cost function J is
minimal, while maintaining Csand(t) = 0.

The projection method chosen to satisfy this constraint is the same as for (Cook 2021).

Since Csand (0) = 0, we wish to minimize J while keeping Csand constant. This
equates to following the direction ∇ψJ while keeping ∇ψCsand = 0. In order to do so,
we project the direction ∇ψJ onto the orthogonal of ∇ψCsand . Hence, the direction of
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the descent d becomes:

d = ∇ψJ −
〈
∇ψJ ,

∇ψCsand∥∥∇ψCsand
∥∥
〉
∇ψCsand∥∥∇ψCsand

∥∥ , (5.26)

with
∇ψCsand(t) = 2ψ

∫
Ω
(ψ− ψ0)dx. (5.27)

This new direction of the descent, illustrated by Figure 5.11, describes a less optimal
path to the minimum of J , but ensures that ∇ψCsand (t) = 0, i.e. Csand (t) = 0, for all
t ∈ [0, T].

Figure 5.11 – Illustration of the new direction of the descent in R2: the direction ∇ψJ is projected onto the orthogonal of
Csand to yield d.

We can easily show that the new direction d and ∇ψCsand are now orthogonal:

〈
d,∇ψCsand

〉
=

〈
∇ψJ −

〈
∇ψJ ,

∇ψCsand∥∥∇ψCsand
∥∥
〉
∇ψCsand∥∥∇ψCsand

∥∥ ,∇ψCsand

〉
= 0 (5.28)

5.3 NNumerical Model

5.3.1 Presentation

In this section, we present the model OptiMorph, how to install and use it.

5.3.1.1 Workflow

Figure 5.12 illustrates the workflow of the OptiMorph model, with the associated
hydrodynamic model. Prior to initiating the model, the user is required to establish
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the initial configuration for the simulation. This includes the forcing data, the choice of
hydrodynamic model, the seabed elevation data, and the constraints.

During each discrete time step, the forcing data is provided to the hydrodynamic
model. This model then calculates the wave height over the cross-shore profile and thus
provides the cost function J (or direction of the descent d) used by OptiMorph’s morpho-
dynamic module. Using the imported sand characteristics, the new shape of the seabed is
determined by minimizing the cost function J (or following the direction of the descent
d). Constraints are applied to the seabed either before or after the minimization takes
place, and the new seabed is retained. At the next time step, the hydrodynamic model is
fed a new forcing condition as well as the new seabed. This cycle continues over the course
of the simulation, and illustrates the intricate interaction between the hydrodynamic and
morphodynamic processes.

Figure 5.12 – OptiMorph workflow coupled with hydrodynamic model.

5.3.1.2 Program Organization

The OptiMorph program is broken down into the following tree structure. There are
4 main folders:

• a folder optimorph which is the heart of the program, all the code architecture
(functions, governing equation, ...) is contained in it, the Mini-Optimorph.py
program must be run to start the calculation;
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• a datas_psi folder containing several types of seabed in .dat format;

• a Results folder where files and figures will be stored;

• a folder Example with files user_config.yaml already preconfigured.

To run a calculation, you need to change the parameters in the user_config.yaml

file.
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optimorph

__init__.py

Mini-Optimorph.py

utils_functions.py

bathy_types.py

functionnal_types.py

my_swan_function.py

my_xbeach_function.py

datas_psi

psi_LIP1A.dat

psi_LIP1B.dat

psi_LIP1C.dat

psi_T06_lineaire.dat
...

Example

Example_1D-geotube.yaml

Example_1D-no-geotube.yaml

Example_2D-geotube.yaml

Example_2D-no-geotube.yaml

Results

user_config.yaml

requirements.txt

setup.py

params_ref.txt

maupiti1D_1m.swn

153



Chapter 5 – OptiMorph 2.0 User Guide

5.3.2 Running OptiMorph

OptiMorph is installed in 3 stages. First, the basic OptiMorph code is installed. Next,
we need numerical models such as SWAN or XBeach to couple our code to them. For
these installations, we use Pagure, which makes them easier.

5.3.2.1 Installation of OptiMorph

The code we provide uses python version >3.7. To install it, please, download the last
1D version using the command line on terminal:

\$ git clone https://oauth2:github_pat_11A7K63PA0lZnQddGwmZyy_KREFJ3N ⌋
VsX2QZyR3oswTmNG99sFbEKMT2wUWYCVN5yLJKWOQKGQzqa1wtvn@github.com/r ⌋
onan-dupont/OptiMorph-1-2D.git

↪→

↪→

If you don’t have a terminal, you can always download the latest version from the
following link: https://ronan-dupont.github.io/files/teaching/OptiM
orph-1-2D.zip.

If you don’t have git installed, you can install with the line:

\$ sudo apt install git

Then, you need to install the following modules on your computers (if you don’t already
have them):

• numpy

• matplotlib

• scipy

• pandas

• xarray

• pyyaml

• imageio

• Pillow
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You can do it in one line with on unix / cmd (windows) terminal.

\$ pip install -r requirements.txt

With just this setup, we can run calculations using the Shoaling model. However, if
we want to couple our OptiMorph model with SWAN, XBeach or other software, we need
to install these programs.

If you have all the module installed and you’d like to make the first launch, you can
run the following command:

\$ python3 optimorph/Mini-Optimorph.py

5.3.2.2 Installation of PAGURE (to install SWAN and XBEACH)

The first step is to install a software program called PAGURE 1, developed by a former
GLADYS doctoral student and postdoctoral fellow (Fabien Rétif 2). This software will
collect all the libraries needed to run the digital tools, and link them in their correct
version with the compiler chosen to compile on the cluster.

First, we connect to the cluster:

\$ ssh e_gcl-XX@muse-login01.hpc-lr.univ-montp2.fr

From now on, all the commands presented in this section are to be entered on the
cluster, not on your local machine. We use git – which we’ll see in detail later – to
retrieve pagure.

1. https://github.com/fretif/pagure
2. https://www.fabienretif.com
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\$ cd

\$ mkdir install-softs

\$ cd install-softs

\$ mkdir pagure.git

\$ cd pagure.git

\$ git clone https://github.com/fretif/pagure.git .

Cloning into '.'...

remote: Enumerating objects: 2000, done.
remote: Counting objects: 100% (334/334), done.
remote: Compressing objects: 100% (231/231), done.
remote: Total 2000 (delta 229), reused 200 (delta 103), pack-reused

1666↪→

Receiving objects: 100% (2000/2000), 4.67 MiB | 0 bytes/s, done.
Resolving deltas: 100% (1475/1475), done.
\$ ./pagure.sh # affiche un message de PAGURE par défaut

PAGURE is now installed in the directory /install-softs/pagure.git.

5.3.2.2.1 Configuring your work environment

Before using PAGURE, it’s important to configure your working environment. To do
this, we’re going to use an environment manager called module.

An environment manager is useful when you need complete control over your working
environment and the flexibility to run multiple versions of the same software. This is
perfectly justified in the case of a cluster or a workstation dedicated to numerical compu-
tation.

In most computers, such as MESO, the module tool is supplied directly by the clus-
ter administrators. On your local workstation, the module tool will probably not be
installed, but PAGURE will detect it and install it automatically.

Without further ado, let’s start using the module tool to configure our working en-
vironment on MESO.
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\$ module avail

------------------- /usr/share/Modules/modulefiles

-----------------------------------------↪→

dot module-git module-info modules null use.own

------------------ /trinity/shared/modulefiles/modulegroups

--------------------------------↪→

cv-admin cv-advanced cv-local cv-standard local

------------------ /trinity/shared/modulefiles/local

---------------------------------------↪→

.....

----------------------------------

/trinity/shared/modulefiles/cv-standard -----------------↪→

....

intel/itac/64/2020.4.912 intel/mkl/32/2017.1.132

intel/compiler/32/2016.3.210 intel/compiler/64/2016.3.210

intel/compiler/32/2017.1.132 intel/compiler/64/2017.1.132

intel/compiler/32/2020.4.912 intel/compiler/64/2020.4.912

gcc/4.9.3(default) intel/mkl/64/2020.4.912

gcc/6.1.0 intel/omnipath/64/libpsm2-10.3.8-3

gcc/7.5.0 git/2.9.3

gcc/8.5.0 intel/mpi/64/2017.1.132

gdb/7.11 intel/mpi/64/2020.4.912

....

This command lists all the libraries/software available on the cluster, with their ver-
sions and sometimes the name of the compiler editor used (GCC or Intel).

Let’s start by resetting the working environment with the command :

\$ module purge

Then we load the modules cv-standard use.own and intel/compiler/64/2

017.1.132 with the command line:

\$ module load cv-standard use.own intel/compiler/64/2017.1.132

Let’s check that the libraries have been loaded in our working environment:
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\$ module list

Currently Loaded Modulefiles:

1) cv-standard 2) use.own 3) intel/compiler/64/2017.1.132

\$ ifort --version

ifort (IFORT) 17.0.1 20161005

Copyright (C) 1985-2016 Intel Corporation. All rights reserved.

We’ve loaded the 2017 version of the Intel brand compiler. Our environment is
ready.

5.3.2.2.2 Installing the SWAN model

To install the SWAN template, you must first configure your working environment with
the 2017 version of the INTEL compiler (see section 5.3.2.2.1). Next, we run PAGURE

with a set of arguments corresponding to this model.

\$ ./pagure.sh --prefix=/home/e_gcl-XX/softs --system=cluster

--compiler=intel --filter=SWAN

--module-dir=/home/e_gcl-XX/privatemodules↪→

This command will compile and install a set of modules (in the sense of module
software) in the privatemodules directory of your personal environment, download
the SWAN software and compile and link it to these libraries, then install it in the soft
directory of your personal environment.

On startup, PAGURE summarizes information about the working environment it has
detected and the software it will install:
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[ INFO ] system is set to cluster

[ INFO ] prefix is set to /home/e_gcl-XX/softs

[ INFO ] module dir is set to /home/e_gcl-XX/privatemodules

[ INFO ] Installation mode is set to auto

[ INFO ] Force to download is set to 0

[ INFO ] Force to reinstall is set to 0

[ INFO ] Auto-remove is set to 1

[ INFO ] Automatic installation of mandatory libraries is set to 1

[ INFO ] When using a filter, show old version is set to 1

[ INFO ] Python interpreter is set to python2.7

......................

[ INFO ] compiler is set to INTEL 17

[ INFO ] MPI library is set to mpich321

......................

[ OK ] Make dir prefix

......................

[ INFO ] The following libraries are pre-selected to be installed :

[ INFO ] mpich 3.2.1

[ INFO ] zlib 1.2.11 (needed by HDF5)

[ INFO ] parallel-netcdf 1.12.1 (needed by Netcdf 4.8.0)

[ INFO ] hdf5 1.10.5 (with parallel I/O)

[ INFO ] netcdf 4.8.0 (version C - need HDF 1.10.5 and

Parallel-Netcdf 1.12.1)↪→

[ INFO ] netcdf 4.5.3 (version Fortran - need Netcdf-C 4.8.0, HDF

1.10.5 and Parallel-Netcdf 1.12.1)↪→

[ INFO ] swan 41.31

......................

[ OK ] We are now ready to install. Please check the information

above↪→

......................

Everything is OK ? Press Enter to continue or press q to quit

At this point, PAGURE asks whether the information detected is correct before con-
tinuing its execution. You should therefore check that :

• the system detected is indeed that of a cluster

[ INFO ] system is set to cluster

• the prefix path, i.e. where all libraries useful to SWAN will be installed, is /home/
e_gcl-XX/softs.

[ INFO ] prefix is set to /home/e_gcl-XX/softs
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• the path of the modules directory, i.e. where the modules will be installed to load the
SWAN libraries in your work environment, is /home/e_gcl-XX/privatemodules.

[ INFO ] module dir is set to /home/e_gcl-XX/privatemodules

• the detected compiler is the 2017 version of Intel.

[ INFO ] compiler is set to INTEL 17

• the parallel computing library (MPI) is Mpich

[ INFO ] MPI library is set to mpich321

If everything is OK, you can press Enter on your keyboard and wait for PAGURE to
finish installing SWAN.

[ INFO ] Removing archive file and source files

[ OK ] Install swan 41.31

[ OK ] Congratulation, you did it

If all has gone well, you can check the installation by listing the libraries with the
module tool.

\$ module avail

....

----------------------------------/home/e_gcl-XX/privatemodules

---------------------------↪→

netcdf-fortran/hdf5.110/mpich321/icc17/4.5.3

hdf5/mpich321/icc17/1.10.5↪→

netcdf-c/hdf5.110/mpich321/icc17/4.8.0

parallel-netcdf/mpich321/icc17/1.12.1↪→

zlib/icc17/1.2.11 mpich/icc17/3.2.1

swan/mpich321/icc17/41.31

So you have a new module swan/mpich321/icc17/41.31

160



5.3. Numerical Model

5.3.2.2.3 Installing the XBEACH model

To install the XBEACH template, we need to start by loading a new working environ-
ment.

Let’s start by resetting the working environment with the command :

\$ module purge

Then we load the modules cv-standard use.own and gcc/7.5.0 with the fol-
lowing command:

\$ module load cv-standard use.own gcc/7.5.0

Let’s check that the libraries have been loaded in our working environment:

\$ module list

Currently Loaded Modulefiles:

1) cv-standard 2) use.own 3) gcc/7.5.0

\$ gcc --version

gcc (GCC) 7.5.0

Copyright © 2017 Free Software Foundation, Inc.

Ce logiciel est un logiciel libre; voir les sources pour les

conditions de copie.↪→

Il n'y a AUCUNE GARANTIE, pas même pour la COMMERCIALISATION ni

L'ADÉQUATION À UNE TÂCHE PARTICULIÈRE.↪→

We’ve loaded the GNU/GCC brand compiler in version 7.5. Our environment is ready!
To install the XBEACH model in its sequential version, we run PAGURE with a set of

arguments corresponding to this model.

\$ ./pagure.sh --prefix=/home/e_gcl-XX/softs --system=cluster

--compiler=gnu --filter=XBEACH

--module-dir=/home/e_gcl-XX/privatemodules↪→

This command will compile and install a set of modules (in the sense of module
software) in the privatemodules directory of your personal environment, download
the XBEACH software and compile and link it to these libraries, then install it in the
soft directory of your personal environment.
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On startup, PAGURE summarizes the information about the working environment it
has detected and the software it will install:

[ INFO ] system is set to cluster

[ INFO ] prefix is set to /home/e_gcl-XX/softs

[ INFO ] module dir is set to /home/e_gcl-XX/privatemodules

[ INFO ] Installation mode is set to auto

[ INFO ] Force to download is set to 0

[ INFO ] Force to reinstall is set to 0

[ INFO ] Auto-remove is set to 1

[ INFO ] Automatic installation of mandatory libraries is set to 1

[ INFO ] When using a filter, show old version is set to 1

[ INFO ] Python interpreter 3.7 will be installed

......................

[ INFO ] compiler is set to GNU 7.5

[ WARNING ] No MPI library

......................

[ OK ] Make dir prefix

......................

[ INFO ] The following libraries are pre-selected to be installed :

[ INFO ] python 3.7

[ INFO ] setuptools 57.0.0 (Python module)

[ INFO ] mako 1.2.0 (Python module)

[ INFO ] zlib 1.2.11 (needed by HDF5)

[ INFO ] hdf5 1.10.5

[ INFO ] netcdf 4.8.0 (version C - need HDF 1.10.5)

[ INFO ] netcdf 4.5.3 (version Fortran - need Netcdf-C 4.8.0 and

HDF 1.10.5)↪→

[ INFO ] xbeach rev5920 (sequential version)

......................

[ OK ] We are now ready to install. Please check the information

above↪→

......................

Everything is OK ? Press Enter to continue or press q to quit

At this point, PAGURE asks whether the information detected is correct before con-
tinuing its execution. You should therefore check that :

• the system detected is indeed that of a cluster

[ INFO ] system is set to cluster

• the prefix path, i.e. where all libraries useful to XBEACH will be installed, is
/home/e_gcl-XX/softs
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[ INFO ] prefix is set to /home/e_gcl-XX/softs

• the path of the modules directory, i.e. where the modules will be installed to load the
XBEACH libraries in your work environment, is /home/e_gcl-XX/privatemodules.

[ INFO ] module dir is set to /home/e_gcl-XX/privatemodules

• the detected compiler is the GNU/GCC compiler in version 7.5

[ INFO ] compiler is set to GNU 7.5

If everything is OK, you can press Enter on your keyboard and wait for PAGURE to
finish installing XBEACH. Compilation may take some time.

......................

Type the absolute path of the archive file 'xbeach-rev5920.zip' :

At this stage, you need to specify the path of the ’xbeach-rev5920.zip’ file distributed
to you (which can also be found at https://drive.google.com/file/d/19Ng
h9vfnkCzLdVgXjcCLQCE4q02zsmBC/view?usp=sharing). For example, if you
copied it to your home directory, you would specify: /home/e_gcl-XX

[ INFO ] Removing archive file and source files

[ OK ] Install xbeach rev5920 (sequential version)

[ OK ] Congratulation, you did it

If all has gone well, you can check the installation by listing the libraries with the
module tool.

\$ module avail

....

----------------------------------/home/e_gcl-XX/privatemodules

---------------------------↪→

netcdf-fortran/hdf5.110/mpich321/icc17/4.5.3

hdf5/mpich321/icc17/1.10.5↪→

netcdf-c/hdf5.110/mpich321/icc17/4.8.0

parallel-netcdf/mpich321/icc17/1.12.1↪→

zlib/icc17/1.2.11 mpich/icc17/3.2.1

swan/mpich321/icc17/41.31 xbeach/gcc75/rev5920
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So you have a new module xbeach/gcc75/rev5920 corresponding to the sequential
version of XBEACH.

5.3.2.3 Input File

The input file for the OptiMorph code is the user_config.yaml. It is presented
as follows:
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user_config.yaml

dirname: Example_1D-convexe_tide # dirname to save figs

and data↪→

figname: Example Simulation 1D of storm in convexe seabed

with tide # simulation name appear on figs↪→

debug: False # this mode plot some interesting values

makeGifs: True # make gifs

T0: 6 # wave period

H0: 1.5 # offshore wave height

h0: 10

nwater: 600 # in the water

nsand: 140 # in the sand

n_iteration: 1000

ifre: 50 # save and plot every ifre iteration

mobility: 0.004

bathy_type: 1 # [0:18]

slope_max: 0.2 #

id_cost_fct: 1 # cost function [1:12]

hydro_mode: 1 # : 0 = shoaling, 1 = swan, 2 = XBeach

dynamic: False
gamma: 0.55

coef_maree: 60 # tide coefficient

u_maree: 6.1 # valeur moyenne du marnage

maree_duration: 12.5 # periode de maree

geotube:

state: False
position_x: 110 # geotube position x [m]

position_y: 10 # geotube position y [m] ONLY FOR 2D MODE

length: 6 # geotube length [m]

height: 2 # geotube height [m]

two_dimension:

state: False
n_i: 300

n_j: 60

L_x: 600

L_y: 20

with the description in the table 5.1 below.
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Parameter Type Name Description Unit

dirname String - Directory name -
figname String - Figure name -
debug Boolean Debug mode This mode plot some interesting values -

makeGifs Boolean Make Gifs This make a gif -
T0 Float T0 Wave period m
H0 Float H0 Offshore wave height m
h0 Float h0 Depth of closure m

Omega Integer Ω Domain size m
n_iteration Integer niteration Number of iterations -

ifre Integer - Save/Plot every ifre -
mobility Float Υ Mobility parameter m.s.kg−1

bathy_type Integer - Sea Bottom type ranging [0,18] -
slope_max Float Mslope Maximum slope -
id_cost_fct Integer - Cost Function type ranging [1,12] -
hydro_mode Integer - Hydrodynamic mode, 0 = shoaling, 1 = swan, 2 = XBeach -

dynamic Boolean - Static (0) or Dynamic (1) forcing -
gamma Float γ Breaking criterion -

coef_maree Integer Ctide Tidal coefficient -
u_maree Float Mre f The reference tidal range m

maree_duration Float Ttide Tide duration h
geotube:

state Boolean - Activate (True) or not (False) -
position_x Integer - Position x of geotube m
position_y Integer - Position y of geotube m

length Integer - Geotube length m
height Integer - Geotube height m

two_dimension:
state Boolean - Activate (True) or not (False) -
n_i Integer - Number of points on x axis -
n_j Integer - Number of points on y axis -
L_x Integer Lx Length of x axis m
L_y Integer Ly Length of y axis m

Table 5.1 – Input parameters.

This file was created as described below. However, you can easily add parameters by
opening the file optimorph/Mini-Optimorph.py.

5.4 AApplications

In this section, the seabed is described as a simple linear function over the cross-shore
profile. First, we simulate the results over a homogeneous sandy seabed, then we look at
introducing submerged structures designed to limit wave activity at the coast. Finally,
we study this last case in 2D on a linear seabed also inclined along y.
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5.4.1 1D Linear Seabed Beach Configuration using Hadamard approach
with SWAN

The applications focus on 3 different cases. These 3 cases aim to show how to use the
code with the 3 different hydrodynamics as well as on 3 different configurations.

5.4.1.1 Setting

The initial cross-shore configuration is given in Figure 5.13: the domain measures 740
m, the mean water level is set at 10 m and we apply a storm profile to the seabed, given
by the top left graph of Figure 5.13 . Here we consider a homogeneous sandy seabed, and
therefore the mobility of the seabed Υ and the maximal slope parameter Mslope slope are
assumed constant over the cross-shore profile Ω.

Figure 5.13 – Initial sandy beach configuration.

5.4.1.2 Input files

The input file is present in the user_config.yaml file and is configured as follows.
It can also be found at the location Example/Example_1D-no-geotube_tide.yaml.
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user_config.yaml

dirname: Example_1D-convexe_tide # dirname to save figs

and data↪→

figname: Example Simulation 1D of storm in convexe seabed

with tide # simulation name appear on figs↪→

debug: False # this mode plot some interesting values

makeGifs: True # make gifs

T0: 6 # wave period

H0: 1.5 # offshore wave height

h0: 10

nwater: 600 # in the water

nsand: 140 # in the sand

n_iteration: 1000

ifre: 50 # save and plot every ifre iteration

mobility: 0.004

bathy_type: 1 # [0:18]

slope_max: 0.2 #

id_cost_fct: 1 # cost function [1:12]

hydro_mode: 1 # : 0 = shoaling, 1 = swan, 2 = XBeach

dynamic: False
gamma: 0.55

coef_maree: 60 # tide coefficient

u_maree: 6.1 # valeur moyenne du marnage

maree_duration: 12.5 # periode de maree

geotube:

state: False
position_x: 110 # geotube position x [m]

position_y: 10 # geotube position y [m] ONLY FOR 2D MODE

length: 6 # geotube length [m]

height: 2 # geotube height [m]

two_dimension:

state: False
n_i: 300

n_j: 60

L_x: 600

L_y: 20
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5.4.1.3 Load SWAN and Run OptiMorph on Cluster

To launch OptiMorph with SWAN, you need to load SWAN into your modules. Here
are a few commands that will enable you to run OptiMorph on the cluster without any
problems:

\$ module purge

\$ module load use.own swan/mpich321/icc17/41.31

\$ module load python/3.7.2

\$ pip install --upgrade pip

\$ pip install -e .

\$ pip install -U matplotlib

\$ python3 optimorph/Mini-Optimorph.py

You can also create a bash to launch the file on slurm with the file below:

run.cmd

#!/bin/bash

# Example of running python script with a job array

#SBATCH -J Run_test

#SBATCH -p gm_gladys

#SBATCH --account=shoremotion

#SBATCH -c 1 # one CPU core per task

#SBATCH -o console.out

#SBATCH -e erreur.out

#SBATCH -N 1

#SBATCH -n 1

#SBATCH --ntasks-per-node 1

#SBATCH --ntasks-per-core 1

# Run python script with a command line argument

srun python optimorph/Mini-Optimorph.py

then run it via the command:

\$ sbash run.cmd

5.4.1.4 Results

At the end of the simulation, we get the following results of Figure 5.13, 5.14, 5.15,
5.16, 5.17, 5.18, 5.19 and 5.20.
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Figure 5.14 – Results halfway through the simulation.

Figure 5.15 – Results at the end of the simulation.
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Figure 5.16 – Initial seabed at the beginning of the simula-
tion. Figure 5.17 – Seabed halfway through the simulation.

Figure 5.18 – Final seabed at the end of the simulation.

Figure 5.19 – Variation of the sand stock over time. Figure 5.20 – Variation of d over time.

A thorough analysis of the results of OptiMorph can be found in (Dupont et al. 2023)
for an experimental flume configuration and (Dupont et al. 2022) for a linear seabed.
Sand conservation has an error of the order of 10−5.
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5.4.2 1D Linear Seabed Beach with GeoTube using Hadamard approach
with XBeach

5.4.2.1 Setting

In this simulation, we introduce a submerged solid structure. To do this, we modify
the seabed profile, as well as the sand mobility parameter Υ and the maximal slope
parameter Mslope, which are no longer constant over the cross-shore profile. In the case of
the mobility parameter, no movement can occur at the location of the structures, i.e. Υ
= 0 where the breakwater is positioned. Similarly, the maximal slope parameter has also
been modified to locally deactivate the slope constraint over the structure. Figure 5.21
shows the new initial configuration incorporating a submerged breakwater located at x =
600 m.

Figure 5.21 – Initial sandy beach configuration with a submerged breakwater located at x = 600 m.

5.4.2.2 Input Files

The input file is present in the user_config.yaml file and is configured as follows.
It can also be found at the location Example/Example_1D-geotube.yaml.
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user_config.yaml

dirname: 1D-geotube_example # dirname to save figs

figname: Example Simulation of storm in 1D linear seabed

with geotube # simulation name↪→

debug: False # this mode plot some interesting values

makeGifs: True # make gifs

T0: 6 # wave period

H0: 2 # offshore wave height

h0: 10

Omega: 1000

n_iteration: 2000

ifre: 50 # save and plot every ifre iteration

mobility: 0.005

bathy_type: 0 # [0:18]

slope_max: 0.2 #

id_cost_fct: 1 # cost function [1:12]

hydro_mode: 2 # : 0 = shoaling, 1 = swan, 2 = XBeach

dynamic: True
gamma: 0.55

coef_maree: 0 # tide coefficient

u_maree: 6.1 # valeur moyenne du marnage

maree_duration: 12.5 # periode de maree

geotube:

state: True
position_x: 600 # geotube position x [m]

position_y: 10 # geotube position y [m] ONLY FOR 2D MODE

length: 40 # geotube length [m]

height: 2.5 # geotube height [m]

two_dimension:

state: False
n_i: 300

n_j: 60

L_x: 600

L_y: 20
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5.4.2.3 Load XBeach and Run OptiMorph on Cluster

To launch OptiMorph with XBeach, you need to load XBeach into your modules. Here
are a few commands that will enable you to run OptiMorph on the cluster without any
problems:

\$ module purge

\$ module load use.own xbeach/gcc75/rev5920

\$ module load python/3.7.2

\$ pip install --upgrade pip

\$ pip install -e .

\$ pip install -U matplotlib

\$ python3 optimorph/Mini-Optimorph.py

You can also create a bash to launch the file on slurm with the file below:

run.cmd

#!/bin/bash

# Example of running python script with a job array

#SBATCH -J Run_test

#SBATCH -p gm_gladys

#SBATCH --account=shoremotion

#SBATCH -c 1 # one CPU core per task

#SBATCH -o console.out

#SBATCH -e erreur.out

#SBATCH -N 1

#SBATCH -n 1

#SBATCH --ntasks-per-node 1

#SBATCH --ntasks-per-core 1

# Run python script with a command line argument

srun python optimorph/Mini-Optimorph.py

then run it via the command:

\$ sbash run.cmd

5.4.2.4 Results

At the end of the simulation, we get the following results of Figure 5.21, 5.22, 5.23,
5.24, 5.25, 5.26, 5.27 and 5.28.
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Figure 5.22 – Results halfway through the simulation.

Figure 5.23 – Results at the end of the simulation.
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Figure 5.24 – Initial seabed at the beginning of the simula-
tion. Figure 5.25 – Seabed halfway through the simulation.

Figure 5.26 – Final seabed at the end of the simulation.

Figure 5.27 – Variation of the sand stock over time. Figure 5.28 – Variation of d over time.

We observe that in the case where there is a geotube (figure 5.26), there is less mor-
phdynamic displacement than without a geotube (figure 5.26). Sand conservation has an
error of the order of 10−5.
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5.4.3 2D Linear Seabed Beach Configuration using Hadamard approach
with Shoaling

5.4.3.1 Setting

In this simulation, we continue with a submerged solid structure but in 2D. To do this,
we modify the seabed profile, as well as the sand mobility parameter Υ and the maximal
slope parameter Mslope, which are no longer constant over the cross-shore profile. In the
case of the mobility parameter, no movement can occur at the location of the structures,
i.e. Υ = 0 where the breakwater is positioned. Similarly, the maximal slope parameter
has also been modified to locally deactivate the slope constraint over the structure. Figure
5.29 shows the new initial configuration incorporating a submerged breakwater located at
x = 600 m.

Figure 5.29 – Initial sandy beach configuration with a submerged breakwater located at x = 150 m.

5.4.3.2 Input Files

The input file is present in the user_config.yaml file and is configured as follows.
It can also be found at the location Example/Example_2D-geotube.yaml.
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user_config.yaml

dirname: plot_test_2D # dirname to save figs

figname: Simulation of storm in linear seabed with geotube

# simulation name↪→

debug: False # this mode plot some interesting values

makeGifs: True # make gifs

T0: 6 # wave period

H0: 2 # offshore wave height

h0: 5.5

Omega: 600

n_iteration: 50

ifre: 5 # save and plot every ifre iteration

mobility: 0.05

bathy_type: 0 # [0:18]

slope_max: 0.2 #

id_cost_fct: 1 # cost function [1:12]

hydro_mode: 0 # : 0 = shoaling, 1 = swan, 2 = XBeach

dynamic: True
gamma: 0.55

coef_maree: 0 # tide coefficient

u_maree: 6.1 # valeur moyenne du marnage

maree_duration: 12.5 # periode de mareex

geotube:

state: True
position_x: 150 # geotube position x [m]

position_y: 10 # geotube position y [m] ONLY FOR 2D MODE

length: 40 # geotube length [m]

height: 2.5 # geotube height [m]

two_dimension:

state: True
n_i: 300

n_j: 60

L_x: 600

L_y: 20

178



5.4. Applications

5.4.3.3 Results

At the end of the simulation, we get the following results of Figure 5.31, 5.32, 5.29,
5.33 and 5.34.

Figure 5.30 – Initial sandy beach configuration with a submerged breakwater located at x = 150 m.

Figure 5.31 – Seabed halfway through the simulation.

179



Chapter 5 – OptiMorph 2.0 User Guide

Figure 5.32 – Final seabed at the end of the simulation.

Figure 5.33 – Seabed halfway through the simulation.
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Figure 5.34 – Final seabed at the end of the simulation.

A thorough analysis of the results of OptiMorph can be found in chapter 4 of the
thesis for the 2D configuration with a geotube.
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II.1 CConclusion

Les travaux de cette thèse se sont principalement concentrés dans le développement
théorique et numérique du modèle morphodynamique OptiMorph. Ce modèle morphody-
namique, fonctionnant par le principe de minimisation, rejoint la vision de Murray (2007)
en tant qu’élément essentiel à la modélisation, à savoir, un modèle exploratoire repro-
duisant certains phénomènes naturels. Il a su faire ses preuves sur les aspects numériques,
mais également physiques. En effet, celui-ci produit des résultats physiques très réalistes
de manière très rapide, sans nucléation ni hyperparamètres. Ce modèle est particulière-
ment performant sur les phénomènes de créations de barres sédimentaires, il a pu être
validé sur les cas de benchmark de SANDS, COPTER et LIP 1C. Grâce à l’approche
mathématique de la dérivée par rapport à la forme au sens d’Hadamard, nous avons pu
rendre notre modèle générique et donc, couplable avec n’importe quel modèle de vagues.
Ceci rend notre modèle polyvalent et opérationnel, pouvant ainsi être déployé facilement
pour résoudre des problèmes d’ingénierie du littoral.

Dans l’état de l’art 0, nous avons retracé les travaux initiés en 2004 par B. Moham-
madi, F. Bouchette et P. Azerad. La description de ces travaux commence par des
problématiques d’optimisation de formes ou de position de structures de défense côtière.
La finalité de ces travaux concerne la modélisation morphodynamique par optimisation.
Ces derniers travaux ont présenté quelques limites. C’est à la suite de cet état de l’art
que les travaux de cette thèse ont pu commencer.

Ensuite, le chapitre 1 s’est concentré sur l’approche historique décrivant la morphody-
namique côtière par la théorie de l’optimisation. Plus spécifiquement, le modèle fonctionne
sur l’hypothèse qu’un profil de plage sableuse évolue afin de minimiser une fonctionnelle
liée aux vagues, dont le choix dépend de ce qui est considéré comme la force motrice der-
rière les processus morphodynamiques côtiers considérés. Des résultats numériques ont
été présentés attestant que notre modèle est stable: celui-ci est bien consistant en temps
et en espace. Ensuite, les résultats comparant OptiMorph, XBeach et une des données
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expérimentales se sont révélés très bons. De plus, les temps de calcul de notre modèle
sont très faibles en comparaison aux modèles classiques. Le modèle a ensuite été étendu
en Multi-1D. Des applications effectuées au large de Montpellier ont donné des résultats
semblables à des expériences en bassin (COPTER 2D (Bouchette 2017)).

Puis, le chapitre 2 commence par les équations fondatrices des mouvements fluides
pour découler à la théorie linéaire ainsi qu’aux deux grandes familles de modèles hydro-
dynamiques: les modèles à phase résolue et les modèles spectraux. Nos travaux néces-
sitant principalement un modèle hydrodynamique produisant une hauteur significative,
nous avons choisi les modèles SWAN, XBeach, un modèle hydrodynamique que nous
avons développé ainsi que le modèle Shallow-Water. En nous basant sur des résultats
expérimentaux (LIP 1C (Roelvink et al. 1995b)), nous avons montré que les résultats de
ces modèles sont relativement bons et que nous pouvons les utiliser dans notre modèle
morphodynamique.

Ensuite, le chapitre 3 exhibe une nouvelle approche mathématique. En utilisant la
dérivée à la manière d’Hadamard, nous avons réussi à rendre notre modèle générique.
Grâce à ces avancées, celui-ci peut être couplé à n’importe quel modèle hydrodynamique.
Nous avons utilisé les modèles hydrodynamiques de SWAN, XBeach et Shallow-Water
dans notre modèle, et nous avons comparé les résultats morphodynamiques au benchmark
hydro-morphodynamique LIP11D ainsi qu’à des simulations en pleine mer. Les résultats
sont très encourageants dans la mesure où notre modèle est capable de créer une barre
sédimentaire au point de déferlement de la vague: ce qui est très proche des conditions
réelles.

Enfin, dans le chapitre 4, nous étendons l’approche du chapitre précédent à la dimen-
sion 2D. Nous développons le formalisme en 2D de notre modèle morphodynamique et
nous analysons les résultats qu’il produit sur la configuration expérimentale Copter 2D.
Cette configuration peut être utilisée dans l’ingénierie côtière. L’utilisation des modèles
REF/DIF et Shoaling en multi-1D mettent en évidence la forte sensibilité au modèle de
vague utilisé. Pour obtenir des résultats morphodynamiques cohérents, il est très impor-
tant de bien choisir le modèle hydrodynamique associé, il doit être choisi en fonction du
site d’étude (type de plage, type d’expérience, type de vagues, etc.).

Le modèle OptiMorph s’est montré très performant sur les cas de tempêtes et d’érosion
; il est très adapté pour prévoir les créations de barres sédimentaires. Il doit donc être
utilisé en ingénierie côtière pour adapter le dimensionnement de structures de défense
du littoral. Par contre, celui-ci présente tout de même des limites. À ce stade-là, il est
encore trop difficile de prédire les migrations de barres sédimentaires pour des conditions
de houles moyennes. Des travaux sont donc à prévoir à ce sujet-là, ceux-ci sont évoqués
dans la partie II.2.

Durant ce doctorat, deux publications en premier auteur ont été effectuées dans le
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journal Ocean Modelling : (Dupont et al. 2023; Dupont et al. 2024).

II.2 PPerspectives

Cette thèse s’étant consacrée principalement au développement du modèle OptiMorph,
a réussi à restreindre les limitations du modèle évoquées par Cook (2021) dans sa con-
clusion. Cependant, il reste tout de même un grand nombre de travaux pouvant être
effectués afin d’améliorer le modèle.

Un premier point concerne les développements théoriques du modèle. Celui-ci pourra
toujours être amélioré en incorporant toujours plus de physique. Suite aux essais décrits
dans l’annexe B.2, la notion de courant n’a pas été implémentée dans le modèle. Cepen-
dant, l’approche du transport décrite dans la section 3.5.2 du chapitre 3 et en annexe B.3,
est un point qui pourrait s’avérer particulièrement intéressant. En effet, en paramétrant
une vitesse comme un problème d’optimisation, il doit être possible de gérer un transport
vers la côte ou vers le large.

Un second point concerne la validation du modèle. Bien que des travaux aient été
effectués sur des cas expérimentaux dans les chapitre 1, 3 et 4. Il est toujours possible
de valider le modèle sur des cas différents comme des cas d’accrétion ou bien d’autres cas
plus connus comme celui présenté dans l’expérience DynaRev (Blenkinsopp et al. 2021;
Schimmels et al. 2020; Martins et al. 2020), mettant une nouvelle fois en évidence le
phénomène de création de barres sédimentaires : ce qui est très bien reproduit par notre
modèle. Par ailleurs, le modèle a été validé sur des cas expérimentaux de canal / bassin, il
pourrait être intéressant de le valider sur des conditions réelles en pleine mer. Cependant,
ces données sont souvent très rares.

Un troisième point, serait d’intégrer notre modèle OptiMorph comme un module
d’extension aux modèles de vagues actuels pouvant ainsi produire un résultat morpho-
dynamique. Il pourrait également être ajouté aux modèles morphodynmiques actuels :
en résolvant, à la fois, la morphodynamique classique et celle d’OptiMorph, ceci pourrait
permettre à ces modèles de pallier certaines limites, notamment sur l’aspect de la création
de barres sédimentaires.

Un dernier point pourrait être de coupler notre modèle avec un plus grand nombre
de modèles de vagues. Ceci pourrait permettre à l’utilisateur de choisir le modèle qu’il
souhaite, sans avoir à faire d’efforts d’implémentation.

Enfin, une perspective numérique pourrait être d’utiliser l’approche Hadamard décrite
dans le chapitre 3 afin de l’utiliser sur des problèmes d’optimisation de forme. Cette
approche ne se limite pas seulement à la modélisation morphodynamique des plages, elle
pourrait être utilisée dans de nombreux autres domaines : l’ingénierie côtière, l’aéronautique,
l’acoustique, la thermodynamique, ...
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A AA Genetic Algorithm to Solve the Optimization Problem
(I.1)

In this section, we describe in more detail how the dual genetic algorithm presented
in the introduction works.

A.1 Population Creation

First, a population ψi=0,...,Npop of Npop individuals is created (Figure I.2.1)). Initially,
all these individuals are identical to the mother individual ψM. For each of these indi-
viduals, a random number of "bumps" (represented by figure A.1) is added to ψM. The
parameters of these "bumps" (number, amplitude A, position, width L) are determined
randomly: this ensures diversity in the initial population, as illustrated in the figure I.2.1).
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Figure A.1 – Illustration of a sinusoidal half-wrap of amplitude A = 1 and length L = 1.

The choice of representing our population with sinusoidal evolution comes from Fourier
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who assures that it’s possible to represent any function with an infinite number of sinu-
soids.

A.2 Selection

For each generation (and therefore iteration), 2 individuals ψq, ψp (with q, p ∈
J0, 1, ..., NpopK) are randomly selected. These two individuals from the population Npop

are then compared in the form of a "duel". In the case of minimization, the individual
with the highest J cost function is mutated. The other individual is retained. Here, the
cost function J = 1

16 ρwg
∫

Ω H2dΩ is the wave energy integrated over the whole domain.
This selection is represented by Figure I.2.2) and is algorithmically translated by the
following pseudo-code 2.

Algorithm 2 Selection and mutation
Input: Npop the number of individuals in the population, ψi=0,...,Npop0 the population,

randint the function returning a random integer, calc_J the calculation of the J
cost function, mutation the function performing a mutation.

Output: The new ψi population with a mutation.
1: p← randint(0, Npop) ▷ Random selection of an individual from the population.
2: q← randint(0, Npop)
3: Jp ← calc_J(ψp) ▷ Calculation of cost function
4: Jq ← calc_J(ψq)
5: if Jp > Jq then
6: Jp ← mutation(Jq) ▷ Cloning + Mutation
7: else
8: Jq ← mutation(Jp)
9: end if

A.3 Mutation

As previously indicated in the algorithm 2, the individual undergoing mutation be-
comes an evolution of the individual with the lowest J cost function. Mutation acts in a
very similar way to population creation. One or more of the individual’s bumps will be
selected. They will then be mutated by changing their parameters (number, amplitude
A, position, width L). They can thus be made to move slightly, have a larger (or smaller)
amplitude and a slightly different length. Unlike the creation of the population, the pa-
rameters are not entirely regenerated; the old parameters evolve by a small amount ε in
order to ensure the convergence of the population. This small ε shift can be seen on the
I.2.3) where there is not much variability between the two individuals (the old and the
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mutated). Moreover, the mutated individual has a slightly lower-cost function than the
original individual.

A.4 Final Population

By cleverly choosing a convergence criterion, we decide to stop mutations within the
population. If the criterion is well chosen, we should obtain a population that has entirely
converged at a single point, as shown in the figure I.2.4). In our case, the algorithm stops
when J hardly evolves over a certain number of iterations. This gives us the convergence
curve figure A.2.
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Figure A.2 – Evolution of J during duels.

Note that the population tends towards a min value. Then, to select the best candi-
date, we simply select the candidate with the lowest cost function.

B AA few Attempts to Improve the Model

Throughout the thesis, we have considered a single J functional, the wave energy inte-
gral. This choice was made deliberately, as we feel that this functional is the most realistic
and produces the most realistic results. However, a multitude of different functionals and
approaches have been tested in order to improve our model. In this section, we present
some tests that have been carried out to improve our model. We have essentially focused
on two cases: a case with linear seabed and an experimental case.

189



Appendix

B.1 Reference Cases

In order to test our new functional as well as possible, we carry out numerous simula-
tions based essentially on the two following test cases. These two cases were presented in
Chapter 1, so we know where their limits lie and what results we can expect.

B.1.1 Case 1: Simulation of a One-Week Storm on a Linear Beach

This first benchmark simulation is presented in Chapter 3 of Cook (2021). This
simulation is described as highly morphogenic in that it simulates a storm over a few days
with the following parameters:

Physics Simulation parameters Hydrodynamic Morphodynamic Domain
Parameters ∆x ∆t Tf Hmax T0 Υ Mslope L h0 slope α

Values 1 m 400 s 1 week 2 m 2 s 4.25e-5 m.s.kg−1 20% 600 m 7 m 11%

Table B.1 – Parameter of the storm simulation.

which are, the spatial step ∆x , the time step ∆t, the duration of the simulation Tf , the
maximum wave height in forcing Hmax, the wave period T0, the sand abrasion Υ, the
maximum sand slope Mslope, the length of the simulation domain L, the closing depth h0.
This is represented by the following forcing and domain figure B.1.
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Figure B.1 – Forcing for the one-week storm simulation.

The result of this simulation shows the formation of a realistic sand bar. We use this
simulation to observe how the model behaves when the physics are changed.

B.1.2 Case 2: Simulation of a Flume Experiment: COPTER

The second reference simulation is present in the article by Cook (2021). This reference
case, called COPTER compares simulations with real data from basin tests. Hydro-
morphodynamic simulations are carried out using our OptiMorph model and the well-
known XBeach model. The results of these simulations are shown in the figure B.2.

Figure B.2 – Weaknesses (circled in turquoise) of the Copter simulation at the morphodynamic level.

Analysis of these simulations revealed a number of major areas for improvement. These
points have been circled in turquoise on the Figure B.2. 1) The movement of sand up-
stream of the simulation. The sandy movements at this point are too great with the
OptiMorph model. 2) The sedimentary bar is supposed to be moving to the coast. How-
ever, it is sagging.

For the first point, it is possible that the experimental surveys present too many uncer-
tainties at this level. Indeed, it is very difficult to perceive precisely the morphodynamic
displacements at the level of the beater. The second point leads us to believe that some-
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thing is missing in our model, such as a current that would allow us to move this bar that
we have. The purpose of our functional approach will be to try to physically represent
this current or other quantities.

B.2 Improvement by Functional Approach

The first idea that comes to mind improving the model in a rather naive way would
be to change what governs the morphodynamics, namely the cost function J . A very
large number of functional J was tested in order to take into account more physics. In
the work of Cook et al. (2021c), a number of functional has been tested, as shown in the
table B.2.

Keyword Definition Commentary
CF0 d = −∇ψESχΩS Recommended
CF1 d = − xB

xS
∇ψESχΩS

CF2 d = − x2
B

xS
∇ψESχΩS

CF3 d = −xB∇ψESχΩS

CF4 d = − xB
xS

∫
ΩS
∇ψESχΩS

CF5 d = (1−Λ)CF2 + ΛCF4 where Λ is the excitation of the seabed
CF6 d = (1−Λ)CF3 + ΛCF4 where Λ is the excitation of the seabed

Table B.2 – Old cost functions J .

The results of these tests showed that the most physical and relevant functional was
the wave energy functional J = EH. This one showed the most relevant results present
in (Cook 2021).

In a similar way, we tried out a large number of functional. Some of the functional we
tested are shown in the table B.3.

Keyword Définition Commentaire
CF8 d = −∇ψ

(
ES − ερU2

orb
)

χΩS Kinetic energy removal
CF9 d = −∇ψ

(
ρU2

orb
)

χΩS Kinetic energy
CF10 d = −∇ψ

(
εCgH2) χΩS

CF11 d = −∇ψ

(
CgH

)
χΩS

CF12 d = −∇ψ

(
ε(CgH)2) χΩS

CF13 d = −∇ψ (Sxx) χΩS Radiation stress
CF14 d = −∇ψ (∇Sxx) χΩS Gradient of adiation stress
CF15 J = 1

8 ρwg
∫

ΩS
H2dx + ρsg

∫
ΩS

(ψ(t)− ψ0(τ − t))2dx Sand displacement memory

Table B.3 – Nouvelles fonctions de coût J .
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these functions have been found by relying on basic physics: calculation of forces, work,
kinetic energy, ... but also by relying on the balance of moments (Sous et al. 2020):

∂

∂x

(
ρU2

)
= −gρ

∂η̄

∂x
− 1

(η̄ + h)
∂Sxx

∂x
− 1

(η̄ + h)
τ̄b

[
Pa ·m−1

]
, (B.1)

where U is the depth-averaged velocity, g the gravitational acceleration, ρ the water
density, η̄ the wave setup, h the still water depth, Sxx the radiation stress, and τb the bed
shear stress.

B.2.1 Functional with Kinetic Energy Dissipation (CF8)

The first functional aims at introducing a term taking into account the kinetics of a
wave. Indeed, if we take into account the kinetics of a wave, it could be that it could
artificially simulate a "current" which would allow us to obtain a displacement of the bar.

J =
1

16

∫
Ωs
(ρgH2 − ερU2

orb)dx (B.2)

with ε in m−1 that we will fix for the moment arbitrarily. In order to implement this
functional, it is necessary to differentiate it according to ψ (calculation of ∇ψJ ). The
term JH has already been differentiated 3.2.1, it only remains to differentiate the term∫

Ωs
ερU2

orbdx. This is easily done via the following expression for the orbital velocity:

Uorb : Ω× [0, h0] −→ R+

(x, ψ) 7−→ cosh (k(x) (h(x)− (h0 − ψ)))

cosh(k(x)h(x))
.

(B.3)

We start again from the calculation of the gradient which allows us to obtain the new
expression:

∇ψJ =
1
4

ρ
(

gH∂ψH + ε∂ψUorb
)

(B.4)

with the only term here that we don’t know: ∂ψUorb. With the equation (B.3), we obtain
:

∂ψUorb =
(
∂ψu v− u ∂ψv

)
v−2
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with:

u = cosh (k (h− (h0 − ψ)))

v = cosh(kh)

∂ψu = sinh(k (h− (h0 − ψ)) (h + ψ− h0)kψ

∂ψv = sinh(kh)(kψh− k)

which is easy to calculate because we know the values of hψ and kψ which were specified
in the part 3.2.
We now try to run simulations on Case 1 (B.1.1) and Case 2 (B.1.2) with different values
of ε from 0.001 to 0.009. The results are shown in the figures B.3 and B.4.
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Figure B.3 – Results for different ε with the dissipation functional for simulation B.1.1.
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Figure B.4 – Results for different ε with the dissipation functional for simulation B.1.2.

In these cases, the CF0 functional is represented in red. Results from figure B.3 suggest
that it is possible to move the bar with this functional. However, looking at the figure
B.4 we notice that there is no displacement of the sedimentary bar. In fact, the effect of
attenuation is merely to attenuate sediment mobility. The conclusion on this functional
from a numerical point of view is that it simply attenuates the descent in the gradient
descent method. The results with ε of the first case are very similar to other results of ψ.

To understand what the model does with this functional, it may be interesting to look
at the distribution of each term on the domain. That is to say, where does the term
Jcinetique acts and where does the term JH act. We display for the first case on figure
B.5, the rapports Jc

Jtot
and JH

Jtot
at different moments of the simulation: at the beginning,

at the peak and at the end.
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Figure B.5 – Rapports Jc
Jtot

and JH
Jtot

at different times of the simulation: at the beginning, at the peak and at the end:
according to different values of ε.

Not surprisingly, we notice that in all cases, the JH cost function is predominant in
far from the coast and then the Jc cost function takes over for the break-up. This can
be explained because there are changes in velocities when the wave breaks and therefore
the gradient is more likely to evolve. Although this work is interesting in understanding
the physics behind the model despite this functional does not help us to address the
weaknesses of our model. We therefore reject this functional in order to move towards
other functions.

B.2.2 Functional in Terms of Representing Work

Other functions were tested in the same way at the B.2.1 part. The idea here is to
consider a functional that would represent the notion of work. This approach aims to
"artificially" adds the notion of current. The functionals tested are the following:
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JCF10 = εCgH2 (B.5a)

JCF11 = CgH (B.5b)

JCF12 = ε(CgH)2. (B.5c)

The differentiation of these functional has been done in a similar way to the previous
part B.2.1. The results coming from these functionals are very similar to those produced
by the JH functional. These functions don’t add significant value to the model, so we’ve
decided not to keep them.

B.2.3 Functional with Radiation Stress Sxx

In the momentum balance on a wave (equation (B.1)), there is a radiation stress term.
This one represents an excess of flow is present as a result of the orbital movement of
a wave. This can be observed on the figure B.6. This excess dissipates mainly on the
bottom friction.

Figure B.6 – Diagram of momentum balance on a wave.

Longuet-Higgins et al. (1962) have sought to quantify this excess flow name the radi-
ation stress Sxx. To quantify this variable, the following expression (equation (B.6)) was
established,

Sxx =
∫ η

−h
(p + ρũ2) dz−

∫ 0

−h
p0dz. (B.6)

The first term of this expression is the total flux of momentum of a wave averaged.
It is then subtracted from it the average flow in the absence of a wave. This quantity
Sxx is thus to be seen as the difference between the time-averaged flux of momentum and
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the average flux in absence of a wave. The work of Longuet-Higgins et al. (1962) was to
simplify the expression of Sxx by a simpler expression namely:

Sxx =

(
2

Cg

C
− 1

2

)
E =

1
8

ρg
(

2kh
sinh 2kh

+
1
2

)
H2 [J.m−1], (B.7)

with Cg the group velocity [m], ρ the water density [kg.m−3], g the gravitational constant
[m.s−2], H the significant height and E the wave energy. The new approach would be
to postulate that the system will try to minimize its energy in the sense of momentum:
minimize the slopes and currents of it. The idea transmitted through this is to suppose
that the system tries to minimize the mechanisms by which this energy is transmitted to
it. This would mean in our case to reduce the spatial gradient of the radiation stress. To
be clearer, we would try to minimize the following functional:

J = ε∇x(Sxx) [J.m−2], (B.8)

with ε in [m] chosen arbitrarily. The differentiation of these functions will be done in
a similar way to the previous part B.2.1. Comparing the results obtained with this
functional with the others, we notice strong oscillations on the morphodynamics. This can
be explained by the fact that the gradient is calculated numerically: this can induce many
numerical biases. Moreover, calculating the gradient will necessarily lead to oscillations
since the values of Sxx (equation (B.8)) are terms in sinh which oscillate a lot. We can
try for example to calculate a functional based only the radiation stress of the following
form (equation (B.9)):

J = Sxx [J.m−2]. (B.9)

Like the previous part, this functional gives results very close to those obtained by the
functional JH. This is because the expression equation (B.8) shows that this is simply
a slightly more complex form of energy function. It is therefore normal to obtain results
very close to those obtained by the JH. We also reject these functional. All previous
work on functional amounts to performing calculations from the same linear theory of
physics with variables often very close to the calculation of JH.

B.2.4 Functional with Memory Term

A new approach, quite different from the previous ones, would be to incorporate "mem-
ory" into the functional. This approach was inspired by (Mohammadi et al. 2014) where
we add a constraint on the movement of the sand requiring a minimum of bathymetric
changes over the time interval [t− τ, t] with τ chosen so that τ >> T0 and T0 is the wave
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period. This gives us the following functional:

J =
1
8

ρwg
∫

ΩS

H2dx + ρsg
∫

ΩS

(ψ(t)− ψ0(τ − t))2dx, (B.10)

with ρs the density of sand [kg.m−3], ρw water density [kg.m−3], H significant water height
[m], g the gravitational constant [m.s−2], ψ bathymetry [m] and ψ0 initial bathymetry
[m].
By differentiating the equation (B.10), we obtain:

∇ψJ = ∇ψ JH + 2ρsg(ψn − ψn−1) (B.11)

and so we can expand using the descent equation (1.9) to arrive at:

ψn+1 = ψn − dtΛΥ
∇ψJH

1− dtΛΥρsg
, (B.12)

in an unconstrained configuration. This equation is very similar to the equation (B.10).
The results obtained with this functional are still very similar to those obtained with JH.
They are almost identical when we use τ = dt presented in B.1.1. The idea of acting on
the numerical scheme can be an interesting approach. We could add more physics, add
this notion of transport by adding a transport term in the numerical descent scheme as
we will see in the next part.

B.3 Adding Transport in the Descent Scheme

By discretizing the descent equation (1.9), we obtain the following basic descent equa-
tion without constraints:

ψn+1
i = ψn

i − ΥΛ∇ψJ . (B.13)

We can easily add a term representing a horizontal transport according to a speed V
[m.s−1] which would transform the equation (B.13) into a new equation:

ψn+1 = ψn + ΥΛ∇ψJ (ψn)− ρVn∇xψn. (B.14)

This equation can be easily implemented by calculating∇xψn by finite differences. For
our tests, we take a constant speed V = 0.001m.s−1 and the orbital velocity V = Uorb.
For the case 1 (B.1.1), we obtain the following final bathymetry results ψ f on figure B.7.
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Figure B.7 – Evolution of ψ f bathymetry for different speeds with the descent transport equation.

The case where V = 0.001m.s−1 (green) shows us that transport works well. However,
it makes no physical sense. This is not realistic because we should not have any sand
displacement in deep-water. The case where V = Uorb seems quite realistic. Moreover, it
shows a displacement of the bar without velocity towards the side. This could possibly
lead to better results on case 2 (B.1.2). Performing analogous simulations, we obtain the
following results figure B.8.

0 50 100 150 200 250 300
Distance from deep sea [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Se
ab

ed
 

 [m
]

Evolution of seaved f for differents velocitys with descent transport equation

h0

0: initial
V=0 m. s 1

V=UOrb [m. s 1]

Figure B.8 – Evolution of the seabed ψ f for different speeds with the descent transport equation.
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C. Configuration File of XBeach

In this case, we don’t see the displacement of the expected sediment bar. Although
the results are not promising, this approach is still very interesting for defining a current
in our model. Assuming we have a wave-to-wave resolution model, we could obtain the
actual current u. This would be much more relevant than orbital velocity.

B.4 Conclusion

This part focused on a functional approach to account for a better physics by trying to
solve the limitations stated by case 1 (B.1.1) and 2 (B.1.2). Many other functional have
been tested, such as some with currants (from SWAN / XBeach models), bottom stress,
.... Some were interesting but none of them was conclusive enough to lift the limits with
this functional approach. However, as indicated in the chapter 3 in the section 3.5.2, the
velocity remains to be defined cleanly in order to be robust on this transport.

C CConfiguration File of XBeach
params.txt

d%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% XBeach parameter settings input file %%%

%%% %%%

%%% case DISCOVER1 %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Bed composition parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rhos = 2650

D90 = 0.0002

%%% Grid parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

depfile = bathy_psi.dep

posdwn = -1

nx = 179

ny = 0

alfa = 0

vardx = 1

xfile = x.grd

yfile = y.grd

xori = 0

yori = 0

thetamin = -180

thetamax = 180
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dtheta = 360

%%% Model time %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tstop = 151

CFL = 0.900000

%%% Morphology parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

morstart = 0

morfac = 0

%ne_layer = bathy_D1_b.dep

%%% Waves %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

instat = 0

Hrms = 0.42

Trep = 8.0

dir0 = 270

%%% Output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tint = 1

tstart = 150

nglobalvar = 6

zs

zb

H

k

u

taubx

D CConfiguration File of SWAN

params.txt

PROJECT 'maupiti1D' 'HOE'

$ Setting the configuration

$##########################
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D. Configuration File of SWAN

SET LEVEL 0.0 NOR 90 INRHOG 1

MODE STATIONARY ONEDIMENSIONAL

COORDINATES CARTESIAN

$ Definition of the grid/ bottom condition

$#########################################

$ REGULAR [xpc] [ypc] [alpc] [xlenc] [ylenc] [mxc] [myc] [mdc] [flow] [fhigh] [msc]

CGRID REGULAR 0 0 0 180 0 179 0 CIRCLE 12 0.02 0.4 36

$ INPGRID BOTTOM REGULAR [xpinp] [ypinp] [alpinp] [mxinp] [myinp] [dxinp] [dyinp]

INPGRID BOTTOM REGULAR 0 0 0 179 0 1 0

READINP BOTTOM -1 'psi.dat' 3 0 FREE

$ Setting physical quantities for the simulation

$###############################################

$ DIFFRACtion 1 0.2

OFF QUAD

GEN3

BREAKING BKD 1 0.73 7.59 -8.06 8.09

TRIAD

$ Definition of forcing conditions

$#################################

BOUND SHAPESPEC JONSWAP 3.30 PEAK DSPR DEGREES

$ PAR [hs] [per] [dir] [dd]

BOUNDSPEC SIDE West CON PAR 0.42 8.0 0 20

$ Si on met 20, on réduit le nombre de basse fréquence qui est à Nan -999.

$ Definition of output features

$##############################

CURVE 'profil' 0 0 179 179 0

TABLE 'profil' HEADER 'swan_output_HSIG.dat' HSIGN

TABLE 'profil' HEADER 'swan_output_T0.dat' TM01
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$ Calculating waves

$####################

COMPUTE

STOP

$

$ Fin du calcul

$#############################

STOP
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