NUMERICAL METHODS FOR PROBLEMS IN FLUID DYNAMICS

NUMERICS2024

Numerical solution of Mild-slope equation using Virtual Element Method

GÉOSCIENCES MONTPELLIER, IMAG, CNRS, UNIVERSITY OF MONTPELLIER

Ronan Dupont 23-24 May 2024, Naples (Italy)

FOREWORD

- A parallel project to my PhD,
- Virtual element method of order *k* with Robin's Boundary condition,
- Application to a concrete problem.

My main PhD work

Photo of the port of Cherbourg (France)

OVERVIEW

- 1. Model problem
- 2. Virtual Element Settings
- 3. Robin Boundary Condition
- 4. Numerical Results
- 5. Applications

I) MODEL PROBLEM

We consider,

$$u = u_i + u_r$$

with u_i the **incident wave** and u_r **the reflected wave**. We have,

$$u_i(\mathbf{x},t) = a_i(\mathbf{x})e^{-i\sigma t}$$
 and $u_r(\mathbf{x},t) = a_r(\mathbf{x})e^{-i\sigma t}$

with $\sigma = 2\pi/T_0$, the **angular frequency** and

$$a_i(\mathbf{x}) = a_{\max}e^{-i\mathbf{k}\mathbf{x}}$$
 with $\mathbf{k} = k(\cos(\theta), \sin(\theta))$

with θ the **incident wave angle**, a_{max} the **maximum wave amplitude**. a_r is subject to...

I) MODEL PROBLEM

a a Géosciences

The Helmholtz equation:

$$\begin{cases} \Delta a + k^2 a = 0, & \text{in } \Omega, \\ +BC. \end{cases}$$

The Mild-Slope equation:

$$\begin{cases} \nabla(\mathbf{C}_p\mathbf{C}_g\nabla a) + k^2\mathbf{C}_p\mathbf{C}_g a = 0, & \text{in } \Omega, \\ +BC. \end{cases}$$

with

M

$$C_p = rac{\sigma}{k} \quad ext{and} \quad C_g = rac{1}{2} \, C_p \, \left[1 \, + \, kh \, rac{1 - anh^2(kh)}{ anh(kh)}
ight],$$

and the wave number *k*, solution of the dispersion relation:

$$\sigma^2 = g k \tanh(kh) \quad ext{with} \quad \sigma = rac{2\pi}{T_0},$$

where T_0 is the wave period and *h* the depth.

CNIS IMAG

I) MODEL PROBLEM

The Helmholtz equation:

$$\begin{cases} \Delta a + k^2 a = 0, & \text{in } \Omega, \\ +BC. \end{cases}$$

The Mild-Slope equation:

$$\begin{cases} \nabla(C_p C_g \nabla a) + k^2 C_p C_g a = 0, & \text{in } \Omega, \\ +BC. \end{cases}$$

- Works only with flat bottoms,
- Easy-to-calculate analytical solutions.

- Works with a non-constant seabed,
- Area of validity: maximum slope of 1/3,
- Difficult to obtain an analytical solution.

1. Model problem

2. Virtual Element Settings

3. Robin Boundary Condition

4. Numerical Results

5. Applications

II) VIRTUAL ELEMENT SETTINGS

- Mesh Decomposition: Decomposition $\{T_h\}_h$ of the domain Ω which is shape-regular. h_E the diameter of E, (x_D, y_D) the centroid of E.
- The standard scale monomial basis: $m_{\alpha_1,\alpha_2} = \left(\frac{x-x_D}{h_D}\right)^{\alpha_1} \cdot \left(\frac{y-y_D}{h_D}\right)^{\alpha_2}$ with $\alpha_1 + \alpha_2 \le k$.
- Local Projections:
 - Local elliptic projector: $\Pi_k^{\nabla, E} : H^1(E) \to \mathbb{P}_k(E)$
 - Local L^2 -projector: $\Pi_k^{0,E} : L^2(E) \to \mathbb{P}_k(E)$

II) VIRTUAL ELEMENT SETTINGS

• Virtual Space:

M

$$V_h^E = \left\{ v_h \in H_0^1(\Omega) \cap C^0(\partial E) : v_h |_{\partial E} \in \mathbb{P}_k(E), \Delta v_h \in \mathbb{P}_k(E) \right\}$$

$$\left(\Pi_k^{\nabla} v_h - v_h, p\right)_{0,E} = 0, \forall p \in \mathbb{P}_k(E) / \mathbb{P}_{k-2}(E)$$

P. D. Y

• Local Degrees of Freedom:

1. Model problem

2. Virtual Element Settings

3. Robin Boundary Condition

4. Numerical Results

5. Applications

1) VARIATIONAL FORMULATION

$$\begin{aligned} & \text{Helmholtz:} \\ & \left\{ \begin{array}{l} \Delta a + k^2 a = 0 \\ a = -a_i \\ \partial n \end{array}, \text{ on } \Gamma_D, \\ & \frac{\partial a}{\partial n} + i \, k \, a = 0 \\ a = -a_i \\ \partial n \end{array}, \text{ on } \Gamma_D, \\ & \frac{\partial a}{\partial n} + i \, k \, a = 0 \\ a = -a_i \\ \partial n \end{array}, \text{ on } \Gamma_D, \\ & \frac{\partial a}{\partial n} + i \, k \, a = 0 \\ a = -a_i \\ \partial n \end{array}, \text{ on } \Gamma_D, \\ & \frac{\partial a}{\partial n} + i \, k \, a = 0 \\ a = -a_i \\ \partial n \end{array}, \text{ on } \Gamma_D, \\ & \frac{\partial a}{\partial n} + i \, k \, a = 0 \\ a = -a_i \\ \partial n \\ \partial n$$

L Nº Y no CO

1) VARIATIONAL FORMULATION - DISCRETE FORM

 $\left\{ egin{array}{l} ext{find } u_h \in V_h \subset V ext{ such that} \ a_h(u_h,v_h) \ = \ 0 \quad orall v \in V, \end{array}
ight.$

CITS IMAG

Géosciences

- $V_h \subset V$ is a finite dimensional space,
- *a_h*(·, ·): *V_h* × *V_h* → ℝ is a discrete bilinear form approximating the continuous form *a*(·, ·).

$$a_{h}(u_{h}, v_{h}) = \sum_{E \in \Omega_{h}} \left[\int_{E} \nabla (C_{p}C_{g}\nabla u_{h}v_{h}) + \int_{E} k^{2}C_{p}C_{g}u_{h}v_{h} \right],$$

$$\approx \sum_{\substack{1/E \int_{E} C_{p}C_{g} = \mathcal{A}_{E} \\ 1/E \int_{E} k^{2}C_{p}C_{g} = \mathcal{B}_{E}} \sum_{E \in \Omega_{h}} \left[\mathcal{A}_{E} \int_{E} (\Delta u_{h}v_{h}) + \mathcal{B}_{E} \int_{E} u_{h}v_{h} \right],$$

$$= \sum_{\substack{green \\ \partial u/\partial n = -iku}} \sum_{E \in \Omega_{h}} \left[-\mathcal{A}_{E} \int_{E} \nabla u_{h}\nabla v_{h} + \mathcal{B}_{E} \int_{E} u_{h}v_{h} - \mathbf{1}_{\Gamma_{\mathrm{Inf}} \subset E} i\mathcal{A}_{E} \int_{\Gamma_{\mathrm{Inf}}} k u_{h}v_{h} \right].$$

1) VARIATIONAL FORMULATION - GENERAL CASE

$$\begin{cases} \Delta u + k^2 \, u = 0 \quad , \quad \text{in } \Omega \, , \\ \frac{\partial u}{\partial n} + k(x, y) \, u = g(x, y) \quad , \quad \text{on } \Gamma_{\text{Inf}}. \end{cases}$$

By expressing in the classical shape functions basis:

$$B = \left(\int_{\Gamma_{\text{Inf}}} k(x, y) \Phi_i(x, y) \Phi_j(x, y)\right)_{i, j}$$

$$a_h(u_h, v_h) = -\int_{\Omega} \nabla u_h \nabla v_h + \int_{\Omega} k^2 u_h v_h - \int_{\Gamma_{\text{Inf}}} k u_h v_h \qquad G = \left(\int_{\Gamma_{\text{Inf}}} k(x, y) \Phi_i(x, y)\right)_i$$

with Φ_i the classical shape functions of order *k*.

$$b_h(v_h) = -\underbrace{\int_{\Gamma_{\mathrm{Inf}}} g \, v_h}_{G}$$

2) ELEMENT PROPERTIES

a a Géosciences

M

 Γ_{Inf} can be expressed as a sum of 1D elements defined by $[\xi_0, \xi_0 + \lambda]$:

Figure 3: 1D element $[\xi_0, \xi_0 + \lambda]$ representation with • : Summits dofs, : Edges dofs.

with x_{GL}^{j} the j - th Gauss-Lobatto quadrature point on [0,1].

CILLS IMAG

3) EXPRESSION OF B_{LOC} and G_{LOC}

On each $[\xi_0, \xi_0 + \lambda]$ element:

$$B_{\rm loc} = \left(\int_0^\lambda k_*(\xi_0 + \xi)\varphi_j(\xi)\varphi_i(\xi)\,d\xi\right)_{0\le i,j\le k},$$
$$G_{\rm loc} = \left(\int_0^\lambda g_*(\xi_0 + \xi)\varphi_i(\xi)\,d\xi\right)_{0\le i\le k}.$$

• φ_i, φ_i are polynomials of order k,

•
$$k_*(\xi_0 + \xi) = k(V_0 + \xi \vec{t}),$$

- g_{*}(ξ₀ + ξ) = g(V₀ + ξ t),
 t: tangential unit vector (V₀ to V₁).

For $i, j \in [|0, k|]$:

$$\varphi_i(\lambda \, x_{GL}^j) = \delta_j^i.$$

Using Lagrange polynomials:

$$\begin{split} \varphi_i(\xi) &= \sum_{j=0}^k \delta_j^i \left(\prod_{l=0, l \neq j}^k \frac{\xi - \lambda x_{\rm GL}^l}{\lambda x_{\rm GL}^j - \lambda x_{\rm GL}^l} \right) \\ &= \frac{1}{\lambda^k} \prod_{l=0, l \neq j}^k \frac{\xi - \lambda x_{\rm GL}^l}{x_{\rm GL}^i - x_{\rm GL}^l} \end{split}$$

4) Computation of B_{LOC} and G_{LOC}

a a Géosciences

On each $[\xi_0, \xi_0 + \lambda]$ element:

$$B_{\text{loc}} = \left(\int_0^\lambda k_*(\xi_0 + \xi)\varphi_j(\xi)\varphi_i(\xi) \, d\xi \right)_{0 \le i,j \le k}$$
$$G_{\text{loc}} = \left(\int_0^\lambda g_*(\xi_0 + \xi)\varphi_i(\xi) \, d\xi \right)_{0 \le i \le k}.$$

• Approximated using Gauss-Lobatto quad of order 4k + 1.

CNIS IMAG

Case: k = constant, g = constant :

$$B = \lambda k \left(\int_{0}^{1} \tilde{\varphi}_{j}(\boldsymbol{\xi}) \tilde{\varphi}_{i}(\boldsymbol{\xi}) d\boldsymbol{\xi} \right)_{0 \le i, j \le k},$$
$$G = \lambda g \left(\int_{0}^{1} \tilde{\varphi}_{i}(\boldsymbol{\xi}) d\boldsymbol{\xi} \right)_{0 \le i \le k}.$$

- $\tilde{\varphi}_i$: polynomials for a unit element $[\xi_0, \xi_0 + 1]$,
- Exact integration with 4*k* 3 GL points,
- A single evaluation.

1. Model problem

2. Virtual Element Settings

3. Robin Boundary Condition

4. Numerical Results

5. Applications

1) ANALYTICAL SOLUTION

a a Géosciences

We consider,

$$\begin{cases} \Delta u + k^2 \, u = f(x, y) &, & \text{in } \Omega \,, \\ u = u_{\text{exact}} &, & \text{on } \Gamma_2 \cup \Gamma_3 \cup \Gamma_4 \,, \\ \frac{\partial u}{\partial n} + i \, k \, u = g(x, y) &, & \text{on } \Gamma_1, \end{cases}$$

CILLS IMAG

with:

M

a b Y al

13/20

Figure 4: Real and Imaginary part of u_{exact} .

$$\begin{cases} u_{\text{exact}}(x,y) = (x+y) \cdot (1+i) + \exp(x^2 + iy^2), & \Gamma_3 \\ f(x,y) = -\left((2x)^2 + (2iy)^2 + 2(1+i)\right) \cdot \exp(x^2 + iy^2) + k^2 \cdot u_{\text{exact}}(x,y), & \Gamma_4 \boxed{\Omega} \\ g(x,y) = (1+i) + (2iy) \cdot \exp(x^2 + iy^2) + ik \cdot u_{\text{exact}}(x,y). & \Gamma_1 \end{cases}$$

Cnrs

IMAG

osciences

2) Convergence of order $\mathcal{O}(h^{k+1})$

M

8

Figure 5: Convergence curves with different orders k and different types of elements

3) INTEREST OF A ROBIN CONDITION

M

And the second

~ ¥ ~ Ø

3) INTEREST OF A ROBIN CONDITION

Problem conditions:

- $a_{\max} = 1 \, \mathrm{m}$,
- $T_0 = 20 \text{ s}$,
- $\theta = 0^{\circ}$.

Points of interest:

• Disturbance of the reflected wave field.

Solving the Helmholz problem with a Neuman condition on Γ_{inf}

Solving the Helmholz problem with a Robin condition on Γ_{inf}

1. Model problem

2. Virtual Element Settings

3. Robin Boundary Condition

4. Numerical Results

5. Applications

1) PROBLEM CONFIGURATION

2) Slope sensitivity, Helmholtz vs Mild-Slope

Problem conditions:

- $a_{\rm max} = 2 \, {\rm m}$,
- $T_0 = 8 \text{ s}$,
- $\theta = 280^{\circ}$.

Points of interest:

M

• Eigenmode position.

Géosciences

CNrs

IMAG

3) Reflection coefficient sensitivity γ

Problem conditions:

• $a_{\max} = 1 \text{ m}$,

•
$$T_0 = 8 \, \mathrm{s}$$
,

•
$$\theta = 280^{\circ}$$
.

Points of interest:

Géosciences

M

- Eigenmode position,
- Amplitude of reflected wave field.

CNrs

IMAG

4) Results at different orders k

Problem conditions:

- $a_{\max} = 1 \text{ m}$,
- $T_0 = 8 \text{ s}$,
- $\theta = 250$ °.

Points of interest:

Géosciences

M

-

• Eigenmode position.

CNrs

Grazie per l'attenzione!

1 2 -1

