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 A B S T R A C T

The Virtual Element Method (VEM), as a high-order polytopal method, offers significant advan-
tages over traditional Finite Element Methods (FEM). In particular, it allows the handling of 
polytopal or non-conforming meshes which greatly simplificates the mesh generation procedure. 
In this paper, the VEM is used for the discretization of the Helmholtz equations with a 
Robin-type absorbing boundary condition. This problem is crucial in various fields, including 
coastal engineering, oceanography and the design of offshore structures. Details of the VEM 
implementation with Robin boundary condition are given. Numerical results on test cases with 
analytical solutions show that the methods can provide optimal convergence rates for smooth 
solutions. Then, as a more realistic test case, the computation of the eigenmodes of the port of 
Cherbourg is carried out.

. Introduction

In recent years, coastal modeling has emerged as a critical scientific and engineering challenge, particularly in the context of 
ising sea levels and increased storm activity induced by climate change. The simulation of wave interactions with coastal and port 
nfrastructure plays a vital role in designing resilient maritime environments. Applications span large-scale ocean dynamics [1–3], 
ediment transport [4–6] and coastal protection [7,8], each requiring precise numerical methods tailored to the specific physical 
nd geometrical context.
In the specific case of port hydrodynamics, the propagation and reflection of waves can be effectively modeled using the 

elmholtz equation [9], especially in configurations with constant seabed depth. While more complex models such as the mild-
lope equation [10] can account for slowly varying bathymetries, their range of validity remains limited to slopes below a certain 
hreshold (typically less than 1/3) [11]. For many practical applications, the use of the Helmholtz model remains a reliable and 
omputationally efficient choice.
The numerical treatment of the Helmholtz equation poses significant challenges, especially in the high-frequency regime, due 

o the pollution effect and the need for accurate boundary treatments. Classical numerical approaches such as the Finite Element 
ethod (FEM) or the Boundary Element Method (BEM) often require structured meshes or impose constraints on the element shape. 
n recent years, the Virtual Element Method (VEM) has emerged as a robust generalization of FEM, particularly suitable for handling 
olytopal meshes and complex geometries. Originally introduced in [12], the VEM combines the flexibility of the Mimetic Finite 
ifference (MFD) methods [13] with the variational framework of the FEM. It retains conformity in 𝐻1 and naturally supports 
on-conforming or polygonal meshes, a feature of particular interest when dealing with real-world coastal domains.
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Fig. 1. Sketch of a free surface elevation 𝜁 in the (𝑥, 𝑧)-plane.

The application of VEM to the Helmholtz equation has gained growing attention in recent years. Of particular relevance is the 
enrichment strategy proposed by Perugia et al. [14], which enhances the approximation properties of VEM for high-frequency wave 
propagation problems. This approach enables the design of Trefftz-type VEM spaces enriched with plane waves, leading to improved 
numerical dispersion properties.

Furthermore, the simulation of wave propagation in open or unbounded domains, such as harbors connected to the sea, requires 
special treatment of artificial boundaries to avoid spurious reflections. While absorbing boundary conditions such as the Robin 
condition are commonly used, a more physically rigorous approach involves coupling domain-based methods like VEM with 
boundary integral formulations such as BEM. Recent works by Desiderio et al. [15] and Gatica et al. [16] have explored this coupling 
in detail, providing stable and efficient formulations for problems defined in exterior domains. These contributions open the way 
for advanced hybrid methods tailored to coastal and offshore engineering.

Despite the maturity of FEM and BEM in coastal modeling, there is still a lack of flexible numerical methods, with well-defined 
boundary conditions (such as Robin’s), capable of accurately capturing wave behavior in realistic harbor configurations. This work 
aims to fill this gap by proposing a high-order VEM approach to solving the Helmholtz equation with absorbing boundary conditions, 
and validating it on academic and realistic port configurations.

The remainder of this paper is organized as follows. Section 2 introduces the physical background and the mathematical 
formulation of the model problem. Section 3 details the construction of the VEM discretization. Implementation aspects, including 
the treatment of Robin boundary conditions, are discussed in Section 4. Section 5 presents validation results and a real-world 
application to the Port of Cherbourg. Finally, we discuss the results in Section 6 and draw some conclusions in Section 7.

2. Physical context

In this section, we will present the physical and mathematical modeling of wave reflection. First, we will derive the mild-slope 
and Helmholtz equations, which will capture wave behavior over variable and constant seabed depths, respectively. Then, we will 
present the Helmholtz problem with mixed boundary conditions, enabling the analysis of wave interactions within confined domains.

2.1. Hydrodynamics for wave reflection

We are interested in deriving a model equation to study wave reflection in ports. Let us consider an inviscid fluid with constant 
density evolving in a 3D canal ending with a wall. As depicted in Fig.  1, the 𝑧-axis points upward with origin 𝑧 = 0 set at the mean 
water level. The sea bottom is defined below the origin by 𝑧 = −ℎ(𝑥, 𝑦), where ℎ is the water column height that does not vary in 
time. We then assume that the sea bottom is not susceptible to accretion or erosion. Finally, the free-surface elevation is defined 
above the origin by 𝑧 = 𝜁 (𝑥, 𝑦, 𝑡).

The flow is assumed to be incompressible and irrotational. Hence, as it is well-known (see e.g. [17]), there exists a velocity 
potential 𝛷(𝑥, 𝑦, 𝑧, 𝑡) that satisfies the Laplace equation:

𝛥𝛷 = 0.

Moreover, assuming a no-slip condition 𝛁𝛷 ⋅ 𝒏 = 0 at the bottom 𝑧 = −ℎ, where 𝒏 is the outward normal to the seabed, and 
restricting the study of the free-surface elevation at 𝑧 = 0 to the context of Airy’s linear approximation wave theory [18], one can 
express 𝛷 as a free-surface potential 𝜙 in the (𝑥, 𝑦)-plane scaled by a certain function:

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 (𝑧, ℎ)𝜙(𝑥, 𝑦, 𝑡)

where, according to [11], the scaling function 𝑓 reads

𝑓 (𝑧, ℎ) =
cosh(𝜅(𝑧 + ℎ))
cosh(𝜅ℎ)

2 
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with 𝜅(𝑥, 𝑦) being the wavenumber which can be retrieved from the linear dispersion relation
𝜔 = 𝑔𝜅 tanh(𝜅ℎ)

with 𝑔 the Earth’s gravity and 𝜔 = 2𝜋∕𝑇  the constant angular frequency associated with the wave period 𝑇 . Following the same 
principle as in [19], that is exploiting the Lagrangian formulation, we obtain the following set of equations

𝑔
𝜕𝜁
𝜕𝑡

+ 𝛁 ⋅ (𝐶𝑝𝐶𝑔𝛁𝜙) + (𝜅2𝐶𝑝𝐶𝑔 − 𝜔2)𝜙 = 0

𝜕𝜙
𝜕𝑡

+ 𝑔𝜁 = 0

which can be restated to eliminate the free-surface potential 𝜙 and thus having the time-dependent mild-slope equation for the 
free-surface elevation 

−
𝜕2𝜁
𝜕𝑡2

+ 𝛁 ⋅ (𝐶𝑝𝐶𝑔𝛁𝜁 ) + (𝜅2𝐶𝑝𝐶𝑔 − 𝜔2)𝜁 = 0. (1)

From here, we can derive the mild-slope model and then the Helmholtz model for simulating wave reflection in a given port 
geometry.

Mild-slope equation. The mild-slope equation allows us to describe the propagation of the reflected wave above a certain depth 
𝑧 = −ℎ(𝑥, 𝑦). To derive it from Eq.  (1), we apply the same principle as in [20], namely, we decompose the free-surface elevation 
into an incident and a reflected part

𝜁 = 𝜁𝑅 + 𝜁𝐼

where both parts can be split into their real-valued amplitude and phase
𝜁𝑅(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑒−𝑖𝜔𝑡  and 𝜁𝐼 (𝑥, 𝑦) = 𝑣(𝑥, 𝑦)𝑒−𝑖𝜔𝑡

where the incident part is defined through 𝜃, the incident wave angle, and 𝑣max, the maximum wave amplitude
𝑣(𝑥, 𝑦) = 𝑣max𝑒

−𝑖𝜿⋅𝐱  with 𝜿 = 𝜅(cos(𝜃), sin(𝜃))⊺.

By injecting the expression of 𝜁𝑅 in Eq.  (1), one can find the steady mild-slope equation for the time-independent reflected 
amplitude (reduced dimension). 

𝛁 ⋅ (𝐶𝑝𝐶𝑔𝛁𝑢) + 𝜅2𝐶𝑝𝐶𝑔𝑢 = 0. (2)

Helmholtz Equation. The Helmholtz equation constitutes a weaker model than the mild-slope equation in the sense that it relies on 
the hypothesis of constant depth ℎ. Moreover, assuming 𝐶𝑔 = 𝐶𝑝∕2 (as in shallow water approximation) and noting that 𝐶𝑝 = 𝜔∕𝜅
is constant, one can rewrite the mild-slope equation Eq.  (2) as the Helmholtz equation [9]: 

𝛥𝑢 + 𝜅2𝑢 = 0. (3)

2.2. Model problem

Let us consider a polygonal domain 𝛺 ⊂ R2 whose boundary is partitioned by mutually disjoint subsets such that 𝜕𝛺 =
𝛤𝐷 ∪ 𝛤𝑁 ∪ 𝛤𝑅, with |𝛤𝑅| > 0. The model problem is therefore the following boundary value problem composed of the Helmholtz 
equation Eq.  (3) together with mixed boundary conditions: 

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find 𝑢 ∈ 𝐻1(𝛺;C) such that
𝛥𝑢 + 𝜅2 𝑢 = 𝑓, in 𝛺

𝑢 = 𝑔𝐷, in 𝛤𝐷 ,
𝜕𝑢
𝜕𝑛

= 𝑔𝑁 , in 𝛤𝑁 ,

𝜕𝑢
𝜕𝑛

+ 𝑖𝜅 𝑢 = 𝑔𝑅, in 𝛤𝑅 .

(4)

where 𝑓 ∈ 𝐻−1(𝛺) is the load term and 𝑔𝐷 ∈ 𝐻
1
2 (𝛤𝐷), 𝑔𝑁 ∈ 𝐻− 1

2 (𝛤𝑁 ) and 𝑔𝑅 ∈ 𝐻− 1
2 (𝛤𝑅) are the functions imposed at the 

corresponding borders. According to the Theorem 2.1 of [21], this problem is well-posed under the assumptions made on the 
domain and its boundary.

Let us define the following spaces:
𝑉0 ∶= {𝑣 ∈ 𝐻1(𝛺;C)∶ 𝑣|𝛤𝐷 = 0}

𝑉𝐷 ∶= {𝑣 ∈ 𝐻1(𝛺;C)∶ 𝑣|𝛤𝐷 = 𝑔𝐷}
3 
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Fig. 2. Fundamental building blocks for the Virtual Element Method.

and let 𝑏∶𝑉𝐷 × 𝑉0 → C, 𝑚∶𝑉𝐷 × 𝑉0 → C and 𝑟∶𝑉𝐷 × 𝑉0 → C three bilinear forms and 𝑙∶𝑉0 → C a linear form defined as follows

𝑏(𝑢, 𝑣) = −∫𝛺
𝛁𝑢 ⋅ 𝛁𝑣

𝑚(𝑢, 𝑣) = 𝜅2
∫𝛺

𝑢𝑣̄

𝑟(𝑢, 𝑣) = −𝑖𝜅 ∫𝛤𝑅
𝑢𝑣̄

𝑙(𝑣) = ∫𝛺
𝑓𝑣̄ − ∫𝛤𝑁

𝑔𝑁 𝑣̄ − ∫𝛤𝑅
𝑔𝑅𝑣̄.

The weak formulation of Eq.  (4) then writes 
{

Find 𝑢 ∈ 𝑉𝐷 such that
𝑎(𝑢, 𝑣) = 𝑙(𝑣), ∀𝑣 ∈ 𝑉0

(5)

where for all 𝑢, 𝑣 ∈ 𝑉𝐷 × 𝑉0, 𝑎(𝑢, 𝑣) = 𝑏(𝑢, 𝑣) + 𝑚(𝑢, 𝑣) + 𝑟(𝑢, 𝑣)

3. The Virtual Element Method

In this section, we expose the building steps of the VEM. As mentioned before, the method is similar to the FEM in that it follows 
the same general construction—in fact, one can easily write a virtual element code starting from a finite element code since the 
biggest difference lies in the computation of local matrices. The VEM can be synthesized and implemented following four main steps 
divided into building blocks as depicted in Fig.  2.

Once the domain 𝛺 has been decomposed by a polygonal mesh 𝛺ℎ, the first step consists of building the Ciarlet triplet 
(𝑇 , 𝑉ℎ(𝑇 ), 𝛴𝑇 ) where 𝑇  is an element of the mesh 𝛺ℎ, 𝑉ℎ(𝑇 ) is the local virtual space defined on 𝑇  and 𝛴𝑇  is the local set of 
degrees of freedom attached to 𝑇 .

Based on this three-block foundation, one can move up to the second block by constructing the global virtual element space 
𝑉ℎ by continuously glueing the local virtual spaces over all mesh elements. However, the functions contained in the local virtual 
spaces are not known explicitly as in finite element but are defined implicitly in such a way that they solve a local PDE on each 
mesh element—which is why they are referred to as ‘‘virtual’’. Therefore, in order to render those functions computable, one needs 
to define a projection operator 𝛱 onto a polynomial space, such that it can be computed from the degrees of freedom. Thanks to 
the projection operator 𝛱 , the global space can be split into a polynomial part 𝛱𝑉ℎ and a non-polynomial part (𝐼 −𝛱)𝑉ℎ. In that 
regard, the virtual space is richer than the finite element space but remains a conforming approximation in the sense that 𝑉ℎ ⊂ 𝑉𝐷.

Now that an approximation space has been defined, one can move to the third block by specifying the discrete variational 
problem where the discrete bilinear form 𝑎ℎ is composed of two parts inherited from the virtual space projection decomposition: a 
consistency part computed from 𝛱 and a stability part computed from 𝐼 −𝛱 .

Finally, the last step corresponds to solving the linear system which is strictly equivalent to the discrete variational problem, it 
is simply restated in algebraic form.

3.1. Preliminaries

Mesh decomposition. As in FEM, the first step for building the method is the discretization of the computational domain 𝛺. But, 
contrary to the FEM, the VEM can handle polygonal meshes made out of a wide variety of element shapes—that is, in the 2D case, 
not only simplices or quadrangles, but also general polygons. This geometrical flexibility allows us to consider non-conforming 
elements with hanging nodes as well as non-convex elements.

We therefore consider a polygonal decomposition (𝛺 )  of the computational domain 𝛺 defined as below.
ℎ ℎ

4 
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Definition 3.1 (Polygonal Mesh). A polygonal mesh is a tuple 𝛺ℎ = (ℎ, ℎ,ℎ) such that
1. ℎ is a finite collection of non-empty open polygons 𝑇  with boundary 𝜕𝑇 , centroid 𝒙𝑇  and diameter ℎ𝑇  that forms a partition 
of 𝛺, i.e. 

𝛺 =
⋃

𝑇∈ℎ

𝑇 ∀ 𝑇1, 𝑇2 ∈ ℎ, 𝑇1 ≠ 𝑇2, 𝑇1 ∩ 𝑇2 = 0 (6)

2. ℎ is a finite collection of non-empty open one-dimensional hyperplanes in such a way that for any edge 𝑒 ∈ ℎ, either there 
exist 𝑇1, 𝑇2 ∈ ℎ, such that 𝑒 ⊂ 𝜕𝑇1 ∩ 𝜕𝑇2 (in that case, 𝑒 is called an internal edge), either there exists 𝑇 ∈ ℎ, such that 
𝑒 ⊂ 𝜕𝑇 ∩ 𝜕𝛺 (in that case, 𝑒 is called a boundary edge)

3. ℎ is a finite collection of vertices corresponding to the end points of each edge in ℎ
where the index ℎ corresponds to the mesh size, that is the maximal diameter among all the mesh elements.

In the following, 𝑁𝑉 , 𝑁𝐸 and 𝑁𝑃  will respectively denote the total number of vertices, edges and polygons inside the mesh. At 
the local scale, 𝑁𝑉

𝑇  and 𝑁𝐸
𝑇  will denote the number of vertices and edges inside the element 𝑇 ∈ ℎ.

On top of that, for any element 𝑇 ∈ ℎ, 𝑇  will denote the set of vertices of 𝑇  and 𝑇  the set of edges of 𝑇 . For further purposes 
involving boundary conditions, we denote by  i

ℎ the collection of internal edges and by b
ℎ the collection of boundary edges, such 

that ℎ =  i
ℎ ∪ b

ℎ . More precisely, we will distinguish between boundary edges enforced with Dirichlet condition 
b,d
ℎ , Neumann 

condition b,n
ℎ  and Robin conditions b,r

ℎ .
In the following, we are interested in meshes made of regular-shaped elements, more specifically isotropic meshes with non-

degenerate faces. Isotropic means here that we do not consider elements that become more and more stretched while refining the 
mesh and non-degenerate faces refer to edges whose diameter is uniformly comparable to the diameter of the element to which it 
belongs. Then, we must assert the following assumption to avoid badly shaped elements in the mesh.

Assumption 3.1 (Shape-Regularity). A polygonal mesh 𝛺ℎ is said to be shape-regular if there exists a real number 𝜌 ∈ (0, 1), 
independent of ℎ, such that every element 𝑇 ∈ ℎ is star-shaped with respect to a ball of radius 

𝑟𝑇 ≥ 𝜌ℎ𝑇 (7)

where ℎ𝑇  is the diameter of 𝑇 .

In general, the mesh is assumed to be shape-regular as stated above. However, such an assumption is purely theoretical, and, in 
practice, this condition can be weakened by considering the mesh to be shape-regular whenever its elements consist of a union of 
star-shaped subsets [22].

Polynomial spaces. Let  ⊂ R2 be open. In the following, P𝑘() will denote the space of polynomials of degree less than or equal 
to 𝑘 over , where , in practice, can be an element 𝑇 ∈ ℎ or an edge 𝑒 ∈ ℎ. Since we are restricted to the two-dimensional case, 
we define

𝑛𝑘 ∶= dimP𝑘(𝑇 ) =
(𝑘 + 1)(𝑘 + 2)

2
,

the dimension of the local polynomial space. We also consider a multiindex 𝜶 = (𝛼1, 𝛼2) ∈ N2 with length |𝜶| = 𝛼1 + 𝛼2 such that, if 
𝒙 = (𝑥, 𝑦) ∈ R2, then 𝒙𝜶 = 𝑥𝛼1𝑦𝛼2 . We will work with scaled monomials of the form 

𝑚𝜶 ∶=
(

𝒙 − 𝒙
ℎ

)𝜶
(8)

where 𝒙 is the barycenter of  and ℎ its diameter. The set of all such polynomials of degree less than or equal to 𝑘 will be denoted 
by 𝑘() ∶= {𝑚𝜶 ∶ |𝜶| ≤ 𝑘}, which constitutes a basis of P𝑘().

For the sake of simplicity, we will associate to each scaled monomial of multi-index 𝜶 = (𝛼1, 𝛼2) a scalar index 𝛼 = 𝜄(𝜶) via the 
natural pairing

(𝛼1, 𝛼2) ⟷ 𝛼

(0, 0) ⟷ 1
(1, 0) ⟷ 2
(0, 1) ⟷ 3
⋮ ⋮

which is given by the following formula 

𝜄(𝛼1, 𝛼2) =
(𝛼1 + 𝛼2)(𝛼1 + 𝛼2 + 1)

2
+ 𝛼2 + 1. (9)
5 
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3.2. Virtual element discretization

A virtual element is a particular type of finite element (𝑇 , 𝑉ℎ(𝑇 ), 𝐷𝑇 ) in the sense of Ciarlet [23,24], where 𝑇  is a polygonal 
element of ℎ, 𝑉ℎ(𝑇 ) is a local space of dimension 𝑁𝑇  containing polynomials enriched with non-polynomial functions defined 
implicitly through a local PDE on 𝑇  and 𝐷𝑇 = {𝐷𝑖}1≤𝑖≤𝑁𝑇

 is the set of local degrees of freedom. As a consequence, any local basis 
{𝜑𝑗}1≤𝑗≤𝑁𝑇

 that satisfies the following local Lagrange property: 

𝐷𝑖(𝜑𝑗 ) = 𝛿𝑗𝑖 , ∀𝑖, 𝑗 ∈ {1,… , 𝑁𝑇 }, (10)

with 𝛿𝑗𝑖 , the usual kronecker symbol. This relation is fundamental and is a consequence of the unisolvence property of the set 
of degrees of freedom—in other words, it expresses the fact that the operator 𝐷𝑇 ∶ 𝑣 ∈ 𝑉ℎ(𝑇 ) → (𝐷1(𝑣),… , 𝐷𝑁𝑇

(𝑣)) ∈ R𝑁𝑇  is 
bijective [25].
Local Projection Operators. One of the key ingredient for building the VEM are projection operators onto local polynomial spaces. 
They are essential to the virtual element discretization in order to compute the projections of virtual functions onto polynomial 
spaces, since the virtual functions themselves are not known explicitly. Traditionally, two kind of projections are considered: the 
𝐿2-projection and the 𝐻1-projection—also called the elliptic projection.

Definition 3.2 (𝐻1-Projection). Let 𝑇 ∈ ℎ and 𝑘 ≥ 1 be an integer. We define the 𝐻1-projection 𝛱1,𝑘
𝑇 ∶ 𝑉ℎ(𝑇 ) → P𝑘(𝑇 ) such that, 

for any 𝑣 ∈ 𝐻1(𝑇 ), 
⎧

⎪

⎨

⎪

⎩

∫𝑇
𝛁𝛱1,𝑘

𝑇 𝑣ℎ ⋅ 𝛁𝑝 = ∫𝑇
𝛁𝑣ℎ ⋅ 𝛁𝑝, ∀𝑝 ∈ P𝑘(𝑇 )∕P0(𝑇 )

P0
(

𝛱1,𝑘
𝑇 𝑣ℎ

)

= P0𝑣ℎ,
(11)

where P0 ∶ 𝑉ℎ(𝑇 ) → P0(𝑇 ) is the projection operator onto constants defined by 

P0𝑣ℎ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁𝑉

𝑁𝑉
∑

𝑖=1
𝑣ℎ(𝑥𝑖)  for 𝑘 = 1

1
|𝑇 | ∫𝑇

𝑣ℎ  for 𝑘 ≥ 2

. (12)

This operator is crucial for keeping the system Eq.  (11) solvable. While the first equation in the first row in Eq.  (11) holds trivially 
for 𝑝 ∈ P0(𝑇 ), it does not provide information to determine the constant component of the projection. Therefore, an additional 
equation involving the projection onto constants is introduced to recover the constant component.

Definition 3.3 (𝐿2-Projection). Let 𝑇 ∈ ℎ and 𝑘 ≥ 0 an integer. We define the 𝐿2-projection 𝛱0,𝑘
𝑇 ∶ 𝑉ℎ(𝑇 ) → P𝑘(𝑇 ) such that, for 

any 𝑣 ∈ 𝐿2(𝑇 ), 

∫𝑇
𝛱0,𝑘

𝑇 𝑣ℎ 𝑝 = ∫𝑇
𝑣ℎ 𝑝 ∀𝑝 ∈ P𝑘(𝑇 ) (13)

Another important projection operator is the 𝐿2-projection of the gradient 𝜫0,𝑘−1
𝑇 ∶ 𝛁𝑉ℎ(𝑇 ) → P𝑘−1(𝑇 )2 defined as above as 

gradients of functions of the virtual space 𝛁𝑣ℎ against vector polynomials 𝑝 ∈ P𝑘−1(𝑇 )2.

Local Virtual Space. We define the local virtual space for all 𝑇 ∈ ℎ by 
𝑉ℎ(𝑇 ) =

{

𝑣ℎ ∈ 𝐻1(𝑇 ) ∩ 𝐶0(𝜕𝑇 )∶ (𝑖) 𝑣ℎ|𝐸 ∈ P𝑘(𝑇 ), ∀𝐸 ⊂ 𝜕𝑇

(𝑖𝑖) 𝛥𝑣 ∈ P𝑘(𝑇 )

(𝑖𝑖𝑖) (𝑣ℎ −𝛱1,𝑘
𝑇 𝑣ℎ, 𝑝) = 0, ∀𝑝 ∈ P𝑘(𝑇 )∕P𝑘−2(𝑇 )

}

.

(14)

The first two conditions (𝑖) and (𝑖𝑖) show that this space is composed of functions that are polynomials of degree at most 𝑘 on the 
edges 𝐸 of the element 𝑇  such that they are globally continuous on the boundary 𝜕𝑇—which means that there are no discontinuities 
at the nodes. Moreover, the virtual functions inside the element are required to solve a Poisson problem in the weak sense.

It is possible to require the functions inside the element to verify another kind of local PDE. In fact, a wide range of virtual 
spaces have been built by considering other local problems, such as the divergence-free virtual space [26].

The last condition (𝑖𝑖𝑖) is added to render the 𝐿2-projection computable as firstly proposed in [27]. We are then dealing with an 
enhanced virtual space which is larger than the classical one initially introduced in [12].
Local Degrees of Freedom. In order to represent our solution onto the mesh, we need to attach to each local virtual space a set of 
local degrees of freedom (DOF). For a 2D VEM, there are three types of DOF fixed to each geometrical component of the element 
(as depicted in Fig.  3) such that, for all 𝑇 ∈ ℎ and for 𝑣ℎ ∈ 𝑉ℎ(𝑇 ), we select

1. the value of 𝑣ℎ at the vertices of 𝑇 : ∀𝑉 ∈ 𝑇 , 
𝐷𝑉 (𝑣ℎ) = 𝑣ℎ(𝒙𝑉 ) (15)

where 𝒙  corresponds to the coordinates of vertex 𝑉 ;
𝑉

6 
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Fig. 3. 2D element with l : vertex DOFs,  ■: Edge DOFs, ▴ : Cell DOFs.

2. the value of 𝑣ℎ at the 𝑘 − 1 internal points of the (𝑘 + 1)-point Gauss–Lobatto quadrature rule or, equivalently, the moments 
of 𝑣ℎ against the monomials of degree up to 𝑘 − 1 on the edge: ∀𝐸 ∈ 𝑇 , 

𝐷𝐸 (𝑣ℎ) =
1
|𝐸|

∫𝐸
𝑣ℎ𝑚𝛼 (16)

with 𝑚𝛼 ∈ 𝑘−1(𝐸);
3. the moments of 𝑣ℎ against the monomials of degree up to 𝑘 − 2 in the element: 

𝐷𝑇 (𝑣ℎ) =
1
|𝑇 | ∫𝑇

𝑣ℎ𝑚𝛼 (17)

with 𝑚𝛼 ∈ 𝑘−2(𝑇 ).

The set of local degrees of freedom therefore consists of
𝐷𝑇 = {𝐷𝑉 }𝑉 ∈𝑇 ∪ {𝐷𝐸}𝐸∈𝑇 ∪ {𝐷𝑇 }.

with

card(𝐷𝑇 ) = 𝑁𝑉
𝑇 + (𝑘 − 1)𝑁𝐸

𝑇 + 𝑛𝑘−2 = 𝑘𝑁𝑉
𝑇 + 𝑛𝑘−2 = dim(𝑉ℎ(𝑇 )) = 𝑁𝑇 .

In the future, the set of DOFs will be indexed as 𝐷𝑇 = {𝐷𝑖}1≤𝑖≤𝑁𝑇
, where the DOFs are being ordered as above—that is vertices 

for 1 ≤ 𝑖 ≤ 𝑁𝑉
𝑇 , edges for 𝑁𝑉

𝑇 + 1 ≤ 𝑖 ≤ 𝑘𝑁𝑉
𝑇  and cell for 𝑘𝑁𝑉

𝑇 + 1 ≤ 𝑖 ≤ 𝑘𝑁𝑉
𝑇 + 𝑛𝑘−2.

3.3. Discrete problem

As in the FEM, the discrete problem is written using the Galerkin method which reads 
{

Find 𝑢ℎ ∈ 𝑉ℎ
𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 𝑙ℎ(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ.

(18)

The global approximation space 𝑉ℎ is obtained by glueing continuously the local virtual spaces 𝑉ℎ(𝑇 ) over the all the elements 
𝑇 ∈ ℎ, that is

𝑉ℎ = {𝑣ℎ ∈ 𝐻1(𝛺;C) ∪ 𝐶0(𝛺)∶ 𝑣ℎ|𝑇 ∈ 𝑉ℎ(𝑇 ), ∀𝑇 ∈ ℎ}

whose dimension is
𝑁 = 𝑁𝑉 + (𝑘 − 1)𝑁𝐸 +𝑁𝑇 𝑛𝑘−2.

The only fundamental difference with the FEM relies on how the bilinear form 𝑎ℎ and the load term 𝑙ℎ are defined. Indeed, the 
VEM exploits the orthogonal decomposition of the global space 𝑉ℎ with respect to the 𝐿2-projection 𝛱0,𝑘

ℎ  for the mass term and the 
elliptic projection 𝛱1,𝑘

ℎ  for the stiffness. From those decompositions, the bilinear form 𝑎ℎ inherits a consistent term that is exact for 
polynomials and a stability term that approximates the non-polynomial part of the virtual space.
Bilinear form 𝑎ℎ. Before defining the global discrete bilinear form 𝑎ℎ ∶𝑉ℎ×𝑉ℎ → C, we discretize each term that makes it up, starting 
with the stiffness term 𝑏ℎ ∶𝑉ℎ × 𝑉ℎ → C which, for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ, reads 

𝑏ℎ(𝑢ℎ, 𝑣ℎ) ∶= −
∑

𝑇∈ℎ
∫𝑇

𝛁𝛱1,𝑘
𝑇 𝑢ℎ ⋅ 𝛁𝛱

1,𝑘
𝑇 𝑣ℎ −

∑

𝑇∈ℎ

𝑠1,𝑇ℎ

(

(𝐼 −𝛱1,𝑘
𝑇 )𝑢ℎ, (𝐼 −𝛱1,𝑘

𝑇 )𝑣ℎ
)

(19)

where 𝑠1,𝑇ℎ ∶ 𝑉ℎ(𝑇 ) × 𝑉ℎ(𝑇 ) → C is a bilinear form satisfying the stability property: for all 𝑣ℎ ∈ 𝑉ℎ(𝑇 ), there exist 𝜆∗, 𝜆∗ > 0 such that

𝜆∗𝑏(𝑣ℎ, 𝑣ℎ) ≤ 𝑠1,𝑇ℎ

(

(𝐼 −𝛱1,𝑘
𝑇 )𝑣ℎ, (𝐼 −𝛱1,𝑘

𝑇 )𝑣ℎ
)

≤ 𝜆∗𝑏(𝑣ℎ, 𝑣ℎ).
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In the same spirit, we define the mass term 𝑚ℎ ∶𝑉ℎ × 𝑉ℎ → C for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ by 

𝑚ℎ(𝑢ℎ, 𝑣ℎ) ∶= 𝜅2
∑

𝑇∈ℎ
∫𝑇

𝛱0,𝑘
𝑇 𝑢ℎ ⋅𝛱

0,𝑘
𝑇 𝑣ℎ + 𝜅2

∑

𝑇∈ℎ

𝑠0,𝑇ℎ
(

(𝐼 −𝛱0,𝑘
𝑇 )𝑢ℎ, (𝐼 −𝛱0,𝑘

𝑇 )𝑣ℎ
)

(20)

where, as before, 𝑠0,𝑇ℎ ∶𝑉ℎ(𝑇 ) × 𝑉ℎ(𝑇 ) → C is a stable bilinear form, i.e. for all 𝑣ℎ ∈ 𝑉ℎ(𝑇 ), there exist 𝜇∗, 𝜇∗ > 0 such that

𝜇∗𝑚(𝑣ℎ, 𝑣ℎ) ≤ 𝑠0,𝑇ℎ

(

(𝐼 −𝛱0,𝑘
𝑇 )𝑣ℎ, (𝐼 −𝛱0,𝑘

𝑇 )𝑣ℎ
)

≤ 𝜇∗𝑚(𝑣ℎ, 𝑣ℎ).

Remark 3.1.  The stabilization term is required to get the well-posedness of the discrete variational problem. There are multiple 
ways of defining it, the most classical one being the so-called ‘‘dofi-dofi’’ stabilization term expressed as follows 

𝑠𝑟,𝑇ℎ (𝑢ℎ, 𝑣ℎ) = 𝜎𝑟𝑇

𝑁𝑇
∑

𝑖=1
𝐷𝑖

(

(𝐼 −𝛱𝑟,𝑘
𝑇 )𝑢ℎ

)

𝐷𝑖

(

(𝐼 −𝛱𝑟,𝑘
𝑇 )𝑣ℎ

)

∀𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ (21)

where 𝑟 = 0, 1 enables us to distinguish between the stiffness and mass stabilization case and 𝜎𝑟𝑇  is a scaling coefficient depending 
on each case. For 𝑟 = 0, the coefficient usually scales as a gradient, typically 𝜎0𝑇 = ℎ2𝑇  or 𝜎0𝑇 = |𝑇 |. For 𝑟 = 1, we usually take 𝜎1𝑇 = 1.

Finally, we define the discrete boundary term 𝑟ℎ ∶𝑉ℎ × 𝑉ℎ → C inherited from the Robin boundary condition, for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ, 
by

𝑟ℎ(𝑢ℎ, 𝑣ℎ) ∶= −𝑖𝜅
∑

𝐸∈b,rℎ

∫𝐸
𝑢ℎ𝑣ℎ.

Remark 3.2.  Note that, in this case, no projection operator is needed before the virtual functions 𝑢ℎ and 𝑣ℎ because, on the boundary 
of an element, they correspond to polynomials of degree 𝑘, which renders the integral over the edge fully computable. This imply 
that we need to integrate a polynomial of degree 2𝑘 over the edge 𝑒, which we detail in the dedicated section Section 4.2.

In the end, the global bilinear form 𝑎ℎ ∶𝑉ℎ × 𝑉ℎ → C is defined as the sum of all those term, i.e for all 𝑢ℎ, 𝑣ℎ ∈ 𝑉ℎ we have
𝑎ℎ(𝑢ℎ, 𝑣ℎ) ∶= 𝑏ℎ(𝑢ℎ, 𝑣ℎ) + 𝑚ℎ(𝑢ℎ, 𝑣ℎ) + 𝑟ℎ(𝑢ℎ, 𝑣ℎ).

Load term 𝑙ℎ. The load term 𝑙ℎ ∶𝑉ℎ → C writes, for all 𝑣ℎ ∈ 𝑉ℎ

𝑙ℎ(𝑣ℎ) ∶=
∑

𝑇∈ℎ
∫𝑇

𝑓𝛱0,𝑘
𝑇 𝑣ℎ −

∑

𝐸∈b,nℎ

∫𝐸
𝑔𝑁𝑣ℎ −

∑

𝐸∈b,rℎ

∫𝐸
𝑔𝑅𝑣ℎ.

Linear System. By writing the discrete solution 𝑢ℎ in the basis virtual basis as

𝑢ℎ =
𝑁
∑

𝑖=1
𝐷𝑖(𝑢ℎ)𝜑𝑖,

one can rewrite Eq.  (18) in its equivalent algebraic form as the system 
𝐀ℎ𝐮ℎ = 𝐥ℎ (22)

where 𝐮ℎ = (𝐷1(𝑢ℎ),… , 𝐷𝑁 (𝑢ℎ))𝑇  is the discrete unknown, 𝐥ℎ =
(

𝑙ℎ(𝜑𝑗 )
)

1≤𝑗≤𝑁  is the load term and 𝐀ℎ = 𝐊ℎ +𝐌ℎ + 𝐑ℎ is the global 
matrix formed by the sum of the matrices associated with the corresponding terms

𝐊ℎ =
(

𝑏ℎ(𝜑𝑖, 𝜑𝑗 )
)

1≤𝑖,𝑗≤𝑁

𝐌ℎ =
(

𝑚ℎ(𝜑𝑖, 𝜑𝑗 )
)

1≤𝑖,𝑗≤𝑁

𝐑ℎ =
(

𝑟ℎ(𝜑𝑖, 𝜑𝑗 )
)

1≤𝑖,𝑗≤𝑁

The challenging task now lies in the computation of those matrices. As explained in the next section, it is achieved by applying 
the integration by part formula and exploiting the properties of the projection operators.

4. Implementation guideline for the virtual element method

In this section, we outline the implementation of the VEM, taking a closer look at the computation of local projection matrices 
and the application of boundary conditions, specifically Robin boundary conditions. It is worth mentioning to the interested reader 
that several implementation guides for the VEM have already been published: the hitchhiker’s guide for the classical VEM [28], the 
guide for the divergence-free VEM for mixed problem [29] and, more recently, more general implementation guides for coding the 
VEM in Matlab [30,31].

For the interesting reader that first wants to take the VEM in hand before coding it, we point out that there already exist many 
open-source virtual element codes written in different programming languages. Here is a non-exhaustive list: two oriented-object 
8 
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Fig. 4. Implementation path for coding the virtual element method.

C++ libraries called Veamy [32] and Vem++ [33], a Python module called dune-vem [24], a Matlab package called VEMLab, and 
many more.

Our programming approach follows the classical implementation path illustrated in Fig.  4 which relies on three main steps that 
are almost self-sufficient in the sense that they can be coded and verified separately and then connected all together to avoid errors. 
Depending on the programming language preferred, one could adopt an object-oriented point of view and conceive each step as a 
class that contains the corresponding objects and methods. Otherwise, a partial implementation can be considered by augmenting 
an already existing finite element code since the structure is the same and the only main difference lies in the computation of local 
matrices.

Discretization. Any code for a polytopal method needs two basic tools: a mesh generator and quadrature rules. The mesh generation 
can be achieved by using open-source software such as Gmsh [34] and PyPolyMesher [35,36] which can also handle polygonal and 
polyhedral decompositions. More generally, an appropriate mesh structure should possess three main fields vertex, edge and
polygon which contain the indices and the important geometrical characteristics (coordinates, measure, centroid, etc.) of the 
corresponding objects and their subordinate objects (e.g. the polygon field should contain the indices of all the polygons in the 
mesh, their geometrical characteristics such as the area, the barycenter and so on, and, for each polygon, it must return to the 
indices of their respective edges in the field edge).

The other crucial point is the quadrature rule for integrating functions, specifically polynomials. In general, considering an open 
subset  ⊂ R2—which, in practice, can correspond to an element or an edge—, one should equip the code with a quadrature rule 
() = ((𝒙𝑘, 𝑤𝑘))1≤𝑘≤𝑛  over  such that, for any function 𝑓 ∶ → R, we have 

∫
𝑓 (𝒙)𝑑𝒙 ≃

𝑛
∑

𝑘=1
𝑓 (𝒙𝑘)𝑤𝑘. (23)

As stated above, the preferred quadrature rule for an edge is the Gauss–Lobatto one. For a polygon, one can consider the 
quadrature rule composed of the ones on each triangle diving the polygon. Another recent technique [37] makes use of the Stokes 
formula to express any integral over an element as a combination of integrals over lower-dimensional objects (edges or vertices) as 
explained in [31].
Virtual Space. The core of the code is the computation of the local matrices. To perform such calculations, three ingredients are 
required: a numbering of degrees of freedom, a way of evaluating the monomial basis and, finally, a routine for computing local 
projections.

The numbering of degrees of freedom should be done globally and can be based on the indices given by the mesh structure. It is 
usually done by ordering the DOFs in the following way: vertex DOFs, edge DOFs and cell DOFs—just as globally as locally. 
The main difference at the local level is that the DOFs are, by convention, arranged clockwise around the element.

Regarding the local basis, it is preferable to pre-compute the monomials at the points of interest (quadrature points for instance) 
to save computational time. One can even pre-compute the entire monomial basis by considering a matrix of the form (𝑚𝑖(𝒙𝑗 ))𝑖𝑗
where the 𝒙𝑗 are the points of interest.

All those features are essential for computing the local projections as detailed below in Section 4.1 where the expression of the 
projection matrices, which is obtained by solving a system locally on the element, is then used to compute the local stiffness and 
mass matrices.
Discrete Problem. Finally, the discrete problem is managed as in the 𝐻1-conforming FEM. Indeed, the assembly is performed by 
adding up the local matrices to the global matrix. A sparse assembly with a triplet containing the row index, the column index and 
the corresponding matrix value is preferred since it is less time consuming. The solution obtained by resolution of the global linear 
system can then be used for the error analysis and other possible post-treatment.
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4.1. Computing the local projection matrices

Local Stiffness Matrix. As explained above, one can write the local stiffness matrix 𝐊𝑇  for all 𝑇 ∈ ℎ by 

𝐊𝑇 = ∫𝑇
𝛁𝜑𝑖 ⋅ 𝛁𝜑𝑗 = ∫𝑇

𝛁𝛱𝑇 §
1,𝑘𝜑𝑖 ⋅ 𝛁𝛱𝑇 §

1,𝑘𝜑𝑗 + 𝑠1,𝑇ℎ
(

𝛁(𝐼 −𝛱𝑇 §
1,𝑘)𝜑𝑖,𝛁(𝐼 −𝛱𝑇 §

1,𝑘)𝜑𝑗
)

(24)

Therefore, to compute the stiffness matrix, it is sufficient to calculate the matrix 𝜫𝟏 associated with the projection operator 𝛱1,𝑘
𝑇 . 

To do so, we exploit the relation Eq.  (11) that characterizes the elliptic projection for a certain virtual basis function 𝜑𝑗 , writing 
𝛱1,𝑘

𝑇 𝜑𝑗 in the monomial basis 

𝛱1,𝑘
𝑇 𝜑𝑗 =

𝑛𝑘
∑

𝑖=1
𝑠𝑖𝑗𝑚𝑖, (25)

which gives us the following system 
𝑛𝑘
∑

𝑖=1
𝑠𝑖𝑗 ∫𝑇

𝛁𝑚𝑖 ⋅ 𝛁𝑚𝛼 = ∫𝑇
𝛁𝜑𝑗 ⋅ 𝛁𝑚𝛼 for 2 ≤ 𝛼 ≤ 𝑛𝑘 (26a)

𝑛𝑘
∑

𝑖=1
𝑠𝑖𝑗 P0𝑚𝑖 = P0𝜑𝑗 for 𝛼 = 1 (26b)

 which writes equivalently in matrix form 
𝐆𝐬𝑗 = 𝐁𝑗 for 1 ≤ 𝑗 ≤ 𝑁𝑇  fixed (27)

Matrix G. We denote by 𝐆 the 𝑛𝑘 × 𝑛𝑘 matrix 

𝐆 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

P0𝑚1 P0𝑚2 ⋯ P0𝑚𝑛𝑘
0 (𝛁𝑚2,𝛁𝑚2)0,𝑇 ⋯ (𝛁𝑚2,𝛁𝑚𝑛𝑘 )0,𝑇
⋮ ⋮ ⋱ ⋮
0 (𝛁𝑚𝑛𝑘 ,𝛁𝑚2)0,𝑇 ⋯ (𝛁𝑚𝑛𝑘 ,𝛁𝑚𝑛𝑘 )0,𝑇

⎤

⎥

⎥

⎥

⎥

⎦

. (28)

This matrix can easily be computed by integrating the monomials over the element 𝑇 , using a quadrature rule on 𝑇  as in Eq. 
(23).

Once 𝐆 has been computed, the system Eq.  (27) can be extended by varying 1 ≤ 𝑗 ≤ 𝑁𝑇  instead of keeping it fixed. Hence, the 
right-hand side is not a vector anymore but a matrix.
Matrix B. We denote by 𝐁 the 𝑛𝑘 ×𝑁𝑇  matrix 

𝐁 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

P0𝜑1 ⋯ P0𝜑𝑁𝑇
(𝛁𝑚2,𝛁𝜑1)0,𝑇 ⋯ (𝛁𝑚2,𝛁𝜑𝑁𝑇

)0,𝑇
⋮ ⋱ ⋮

(𝛁𝑚𝑛𝑙 ,𝛁𝜑1)0,𝑇 ⋯ (𝛁𝑚𝑛𝑙 ,𝛁𝜑𝑁𝑇
)0,𝑇

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

The first line of the matrix is easy to compute. Indeed, by using the expression of projection operator onto constants P0 given 
by Eq.  (12) and by recalling that 𝜑𝑗 satisfies Eq.  (10), one has

𝐁1𝑗 =

⎧

⎪

⎨

⎪

⎩

1  for 𝑘 = 1

𝛿
𝑘𝑁𝑉

𝑇 +1
𝑗  for 𝑘 ≥ 2

 for 1 ≤ 𝑗 ≤ 𝑁𝑇

For 𝛼 ≥ 2, we perform an integration by part

𝐁𝛼𝑗 = ∫𝑇
𝛁𝑚𝛼 ⋅ 𝛁𝜑𝑗 = −∫𝑇

𝛥𝑚𝛼𝜑𝑗 + ∫𝜕𝑇
(𝛁𝑚𝛼 ⋅ 𝒏)𝜑𝑗 .

The matrix can then be exactly split into two blocks corresponding to each integral of the right-hand side.
Let us start with the boundary integral, we have for 1 ≤ 𝑗 ≤ 𝑘𝑁𝑉

𝑇

𝐁𝛼𝑗 = ∫𝜕𝑇
(𝛁𝑚𝛼 ⋅ 𝒏)𝜑𝑗 =

∑

𝐸∈𝑇
∫𝐸

(𝛁𝑚𝛼 ⋅ 𝒏𝐸 )𝜑𝑗

with 𝒏𝐸 the outward normal of the edge 𝐸 (see Fig.  5). Since the basis function 𝜑𝑗 takes the value 1 at the point 𝒙𝑗 and 0 everywhere 
else, the sum over the edges then reduces into one or two terms, depending if the point 𝒙𝑗 is attached to a vertex 𝑉𝑗 or an edge 𝐸𝑗

𝐁𝛼𝑗 =

{

(𝛁𝑚𝛼(𝒙𝑗 ) ⋅ 𝒏𝐸𝑗
+ 𝛁𝑚𝛼(𝒙𝑗 ) ⋅ 𝒏𝐸𝑗+1

)𝑤𝑗  if attached to 𝑉𝑗
(𝛁𝑚𝛼(𝒙𝑗 ) ⋅ 𝒏𝐸𝑗

)𝑤𝑗  if attached to 𝐸𝑗

where 𝑤  is the Gauss–Lobatto weight associated to the point 𝒙 .
𝑗 𝑗

10 
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Fig. 5. Sketch of integration over the edges of the element 𝑇 .

On the other hand, for the integral over the element, by computing the Laplacian of 𝑚𝛼 (using Eq.  (8)), we get for 𝑘𝑁𝑉
𝑇 + 1 ≤

𝑗 ≤ 𝑘𝑁𝑉
𝑇 + 1 + 𝑛𝑘−2

𝐁𝛼𝑗 = −∫𝑇
𝛥𝑚𝛼𝜑𝑗 = −

𝛼1(𝛼1 − 1)
ℎ2𝑇

∫𝑇
𝑚𝛽𝜑𝑗 −

𝛼1(𝛼1 − 1)
ℎ2𝑇

∫𝑇
𝑚𝛾𝜑𝑗

where 𝛽 = 𝜄(𝛼1 − 2, 𝛼2) and 𝛾 = 𝜄(𝛼1, 𝛼2 − 2) are the corresponding indices which can be computed through Eq.  (9) for 𝛼1, 𝛼2 ≥ 1. The 
first integral on the right-hand side corresponds to an internal degree of freedom if and only if 𝑚𝛽 ∈ 𝑘−2(𝑇 ), i.e. 1 ≤ 𝛽 ≤ 𝑛𝑘−2, 
otherwise it reduces to zero. By the same reasoning on the second internal, we get that

𝐁𝛼𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝛼1(𝛼1 − 1)|𝑇 |

ℎ2𝑇
 if 1 ≤ 𝛽 ≤ 𝑛𝑘−2

−
𝛼2(𝛼1 − 2)|𝑇 |

ℎ2𝑇
 if 1 ≤ 𝛾 ≤ 𝑛𝑘−2

.

We can now solve the system and compute the matrix associated with the elliptic projection Π1
∗ = 𝐆−1𝐁. However Π1

∗ ∶R
𝑛𝑘 →

R𝑁𝑇  represents the elliptic projection within the monomial basis 𝑘(𝑇 ). Therefore, we need to compute an additional matrix that 
will allow us to write the matrix Π1 ∶R𝑁𝑇 → R𝑁𝑇  which represents the elliptic projection within the virtual basis.
Matrix D. We denote by 𝐃 the 𝑁𝑇 × 𝑛𝑘 matrix given by 

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐷1(𝑚1) 𝐷1(𝑚2) ⋯ 𝐷1(𝑚𝑛𝑘 )
𝐷2(𝑚1) 𝐷2(𝑚2) ⋯ 𝐷2(𝑚𝑛𝑘 )

⋮ ⋮ ⋱ ⋮
𝐷𝑁𝑇

(𝑚1) 𝐷𝑁𝑇
(𝑚2) ⋯ 𝐷𝑁𝑇

(𝑚𝑛𝑘 )

⎤

⎥

⎥

⎥

⎥

⎦

. (30)

or, equivalently
𝐃𝑖𝛼 = 𝐷𝑖(𝑚𝛼),  for 1 ≤ 𝑖 ≤ 𝑁𝑇  and 1 ≤ 𝛼 ≤ 𝑛𝑘,

This matrix can be easily computed from the expression of degrees of freedom. For the DOFs on the boundary of the element 
(vertices and edges), it corresponds to the evaluation of the monomials at the corresponding points 𝒙𝑖—the vertex points in one 
case and the 𝑘 − 1 internal Gauss–Lobatto points in the other. For the DOFs inside the cell, it suffices to compute the moment of 
every monomial against the monomials 𝑚𝑗 ∈ 𝑘−2(𝑇 ). In short, we have

𝐃𝑖𝛼 =

⎧

⎪

⎨

⎪

⎩

𝑚𝛼(𝒙𝑖)  for 1 ≤ 𝑖 ≤ 𝑘𝑁𝑉
𝑇

1
|𝑇 | ∫𝑇

𝑚𝛼𝑚𝑗  for 1 ≤ 𝑗 ≤ 𝑛𝑘−2,  and 𝑘𝑁𝑉
𝑇 + 1 ≤ 𝑖 ≤ 𝑁𝑇

.

Consequently, the matrix 𝐃∶R𝑛𝑘 → R𝑁𝑇  can be understood as a change-of-basis matrix from the basis of monomials 𝑘(𝑇 ) to 
the virtual basis (𝜑𝑗 )1≤𝑗≤𝑁𝑇

 of 𝑉ℎ(𝑇 ).
𝐻1-Projection Π1. We denote by Π1 the matrix defined by 

Π1 = 𝐃Π1
∗ = 𝐃(𝐆−1𝐁). (31)

A practical way of checking that Π1 is well-computed is to check that
𝐆 = 𝐁𝐃.
11 
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Finally, the local stiffness matrix 𝐊𝑇  reads 
𝐊𝑇 = (Π1

∗)
T𝐆̃(𝜫1

∗) + 𝜎1𝑇 (𝐈 −𝜫1)T(𝐈 −Π1) (32)

where 𝐆̃ is equal to 𝐆 except for the first row which is set to zero, and the stabilization parameter 𝜎1𝑇 = 1 as explained in Remark 
3.1.

Local 𝐿2-Projection. For all 𝑇 ∈ ℎ, the local mass matrix 𝐌𝑇  can be written in the following form:

𝐌𝑇 = ∫𝑇
𝜑𝑖𝜑𝑗 = ∫𝑇

𝛱0,𝑘
𝑇 𝜑𝑖𝛱

0,𝑘
𝑇 𝜑𝑗 + 𝑠0,𝑇ℎ

(

(𝐼 −𝛱0,𝑘
𝑇 )𝜑𝑖, (𝐼 −𝛱0,𝑘

𝑇 )𝜑𝑗

)

.

To compute the local mass matrix, it is then sufficient to calculate the matrix Π0 associated with 𝐿2-projection operator 𝛱0,𝑘
𝑇 . 

We consider the decomposition of 𝛱0,𝑘
𝑇 𝜑𝑗 in the monomial basis

𝛱0,𝑘
𝑇 𝜑 =

𝑛𝑘
∑

𝑖=1
𝑡𝑖𝑗𝑚𝑖

which, injected in Eq.  (13), gives us the following system
𝑛𝑘
∑

𝑖=1
𝑡𝑖𝑗 ∫𝑇

𝑚𝑖𝑚𝛼 = ∫𝑇
𝜑𝑗𝑚𝛼  for 1 ≤ 𝛼 ≤ 𝑁𝑇

which can also be written
𝐇𝐭𝑗 = 𝐂𝑗 .

Matrix H. We denote by 𝐇 the 𝑛𝑘 × 𝑛𝑘 matrix given by 

𝐇 ∶=
⎡

⎢

⎢

⎣

(𝑚1, 𝑚1)0,𝑇 ⋯ (𝑚1, 𝑚𝑛𝑘 )0,𝑇
⋮ ⋱ ⋮

(𝑚𝑛𝑘 , 𝑚2)0,𝑇 ⋯ (𝑚𝑛𝑘 , 𝑚𝑛𝑘 )0,𝑇

⎤

⎥

⎥

⎦

, (33)

or, equivalently
𝐇𝛼𝛽 = (𝑚𝛼 , 𝑚𝛽 )0,𝑇 ,  for 1 ≤ 𝛼, 𝛽 ≤ 𝑛𝑘,

This matrix can easily be computed by integrating the monomials over the element 𝑇 , using the quadrature rule on 𝑇  as in Eq. 
(23).

Matrix C. We denote by 𝐂 the 𝑛𝑘 ×𝑁𝑇  matrix given by 
𝐂𝑖𝑗 ∶= (𝑚𝑖, 𝜑𝑗 )0,𝑇 ,  for 1 ≤ 𝑖 ≤ 𝑛𝑘  and 1 ≤ 𝑗 ≤ 𝑁𝑇 (34)

This matrix can be treated into two different parts. First, we observe that, when 1 ≤ 𝑖 ≤ 𝑛𝑘−2, 𝐂𝑖𝑗 can be rewritten as a degree 
of freedom

𝐂𝑖𝑗 = |𝑇 |𝐷𝑖(𝜑𝑗 ) = |𝑇 |𝛿𝑗𝑖
which gives us an identity matrix scaled by the area of the polygon |𝑇 | for the first block 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑘−2. Then, when 𝑛𝑘−2+1 ≤ 𝑖 ≤ 𝑛𝑘, 
one recognizes the enhancing condition of the virtual space defined above Eq.  (14) and we can hence write

𝐂𝑖𝑗 = (𝑚𝑖,𝛱
1,𝑘
𝑇 𝜑𝑗 )0,𝑇 = (𝐇𝐆−1𝐁)𝑖𝑗 .

𝐿2-Projection Π0. We denote by Π0 the matrix defined by 
Π0 = 𝐃Π0

∗ = 𝐃(𝐇−1𝐂) (35)

A practical way of checking that Π0 is well-computed is to check that
𝐇 = 𝐂𝐃.

Finally, the local mass matrix 𝐌𝑇  reads 
𝐌𝑇 = 𝐂𝑇𝐇−1𝐂 + 𝜎0𝑇 (𝐈 −𝜫0)T(𝐈 −Π0) (36)

where the stabilization parameter 𝜎0𝑇 = |𝑇 | as explained in Remark  3.1.
Local load term. The load term easily writes

𝐥𝑇 = (Π0
∗)

𝑇𝐹

where 𝐹  is the vector formed by the moments of 𝑓 against the monomials of 𝑘(𝑇 ), i.e. 𝐹 =
(

∫𝑇 𝑓𝑚1,… , ∫𝑇 𝑓𝑚𝑛𝑘

)𝑇
.

Global Assembly. Below, in the algorithm 1 algorithm, we propose a pseudo-code implementation of the virtual element method 
and the algorithm 2 takes into account Dirichlet and Robin boundary conditions.
12 
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Algorithm 1 Global assembly of the linear system
1: for 𝑇 ∈ ℎ do
2:  Compute 𝐵, 𝐷, 𝐺, 𝐶, 𝐻
3:  Compute 𝛱1

∗ , 𝛱1, 𝛱0
∗ , 𝛱0

4:  Compute the local stiffness matrix: 𝐊𝑇 = (𝚷1
∗)

T𝐆̃(𝜫1
∗) + (𝐈 −𝜫1)T(𝐈 −𝚷1)

5:  Compute the local mass matrix: 𝐌𝑇 = 𝐂T𝐇−1𝐂 + |𝑇 |(𝐈 −𝜫0)T(𝐈 −𝜫0)
6:  𝐴ℎ ← 𝐴ℎ + (−𝐊𝑇 + 𝜅2𝐌𝑇 ) ⊳ Adds global contributions
7: end for

Fig. 6. 1D element [𝜉0 , 𝜉0 + 𝜆] representation for different orders 𝑘, with l : Summits dofs,  ■: Edges dofs.

4.2. Imposing boundary conditions

In this section, we focus on the implementation of mixed boundary conditions: a mixed Neumann and Dirichlet condition with 
a particular emphasis on calculating the Robin term 𝑟ℎ(𝑢ℎ, 𝑣ℎ) in our variational formulation.

Algorithm 2 Imposing boundary conditions in the linear system
1: for 𝐸 ∈ b

ℎ do
2:  if 𝐸 ∈ b,r

ℎ  then
3:  Compute 𝐑𝐸
4:  𝐴ℎ ← 𝐴ℎ + 𝐑𝐸 ⊳ Adds global contributions
5:  else if 𝑒 ∈ b,d

ℎ  then
6:  𝐴ℎ ← 1 ⊳ Set the line to 0 and add a 1 to the correct DDL position
7:  𝑙ℎ ← 𝑔𝐷 ⊳ Set the value of the DC on this DDL
8:  end if
9: end for

Unlike the mass matrix 𝐌ℎ and the stiffness matrix 𝐊ℎ, which are calculated using the virtual element formalism, the Robin 
matrix 𝐑ℎ is calculated in a manner analogous to Lagrange high-order finite elements, with the difference that the degrees of 
freedom are not placed in the same locations on the edge.

We can express the global matrix 𝐑ℎ associated to the formulation 𝑟ℎ in a basis of classical shape function, thus

(𝐑ℎ)𝑖𝑗 =
(

∫𝛤𝑅
𝛼(𝑥, 𝑦)𝛷𝑗 (𝑥, 𝑦), 𝛷𝑖(𝑥, 𝑦)

)

𝑖𝑗
,

with 𝛼∶R2 → R. The boundary 𝛤𝑅 can be decomposed into a sum of 1D elements that can be characterized by the segment [𝜉0, 𝜉0+𝜆]
between two vertices 𝑉0 and 𝑉1. These elements are segments joining 2 consecutive points of the edge. The 𝛷𝑖 basis function attached 
to the 𝑖 vertex of the edge, restricted to the edge element, is a polynomial of degree 𝑘 on the edge. These characteristic 1D elements 
are shown in Fig.  6 with the degrees of freedom corresponding to the Gauss–Lobatto quadrature points on [0, 𝜆]. Consequently, the 
higher the order, the more points there will be on the segment.

In this way, we can express the local edge matrix for all 𝐸 ∈ b,r
ℎ

𝐑𝐸 =
(

∫

𝜆

0
𝛼∗(𝜉0 + 𝜉)𝑙𝑖(𝜉)𝑙𝑗 (𝜉) 𝑑𝜉

)

0≤𝑖,𝑗≤𝑘
(37)

with 𝑙𝑖, 𝑙𝑗 polynomial test functions of order 𝑘, 𝛼∗(𝜉0 + 𝜉) = 𝛼(𝑉0 + 𝜉 𝑡⃗ ) the 1D restriction of 𝛼 and ⃗𝑡 the tangential unit vector (from 
𝑉0 to 𝑉1). We can easily deduce the explicit form of 𝑙𝑖 because we have ∀ 𝑖, 𝑗 ∈ [[0, 𝑘]], 

𝑙𝑖(𝜆 𝑥
𝑗
𝐺𝐿) = 𝛿𝑖𝑗 , (38)

with 𝑥𝑗  the 𝑗 − th Gauss–Lobatto quadrature point on [0,1] (see Fig.  6). We can therefore deduce from the Lagrange polynomials:
𝐺𝐿

13 
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𝑙𝑖(𝜉) =
𝑘
∑

𝑗=0
𝛿𝑖𝑗

( 𝑘
∏

𝑚=0,𝑚≠𝑗

𝜉 − 𝜆𝑥𝑚GL
𝜆𝑥𝑗GL − 𝜆𝑥𝑚GL

)

= 1
𝜆𝑘

𝑘
∏

𝑚=0,𝑚≠𝑖

𝜉 − 𝜆𝑥𝑚GL
𝑥𝑖GL − 𝑥𝑚GL

.

For example, for 𝑘 = 1, 𝑙0(𝜉) = 𝜆−𝜉
𝜆  and 𝑙1(𝜉) = 𝜉

𝜆 .
Now we can compute the local matrix 𝐑ℎ

𝐸 of size (𝑘+1, 𝑘+1) through Eq.  (37). All we need to do is calculate the integrals using 
a quadrature method, such as Gauss–Lobatto, which was introduced in the section on virtual elements, Section 3.

After that, 𝐑ℎ is assembled in the same way as conventional finite element assemblies. Except that here, instead of iterating over 
all the DOFs of all the elements in the mesh, we only iterate among the DOFs of the edges belonging to 𝛤𝑅.

Remark 4.1.  Let us give a few more useful points:
• In the case where 𝛼 is a constant function (which is the case for the Helmholtz equation), we can simplify Eq.  (37) using a 
change of variable to obtain the following local matrix equation Eq.  (39) (see calculation in Appendix  A for more details). 

𝐑𝐸 =
(

∫

𝜆

0
𝛼∗(𝜉0 + 𝜉)𝑙𝑖(𝜉)𝑙𝑗 (𝜉) 𝑑𝜉

)

0≤𝑖,𝑗≤𝑘
= 𝛼 𝜆

(

∫

1

0
𝑙𝑖(𝜉)𝑙𝑗 (𝜉) 𝑑𝜉

)

0≤𝑖,𝑗≤𝑘

, (39)

with 𝑙𝑖 the polynomials for a unit element [𝜉0, 𝜉0 + 1]. So all we need to do is evaluate the integral equation Eq.  (39) once to 
obtain all the local matrices of the boundary segments. Moreover, this integral deals with a polynomial of degree 2𝑘, which 
can be evaluated exactly using a quadrature method with 𝑘 + 2 Gauss–Lobatto points.

• In the case where the Robin boundary condition is inhomogeneous, the approach is similar. We express the matrix analogously 
to the matrix in (37). 

𝐋 = ∫𝛤𝑅
𝛽(𝑥, 𝑦)𝛷𝑖(𝑥, 𝑦). (40)

with 𝛽 ∶R2 → R. Then we express the local matrix always on the segments characterized by [𝜉0, 𝜉0 + 𝛿], 

𝐋𝐸 =
(

∫

𝜆

0
𝛽∗(𝜉0 + 𝜉)𝑙𝑖(𝜉) 𝑑𝜉

)

1≤𝑖≤𝑘+1
, (41)

with 𝑙𝑖 a polynomial test function of order 𝑘, 𝛽∗(𝜉0+𝜉) = 𝛽(𝑉0+𝜉 𝑡⃗ ) the 1D restriction of 𝛽 on 𝛤𝑅 and ⃗𝑡 the tangential unit vector 
(from 𝑉0 to 𝑉1). Here, we calculate and assemble this matrix as before. Moreover, we can always simplify the calculation of 
this matrix if 𝛽 is a constant function, then 

𝐋𝐸 = 𝜆𝛽

(

∫

1

0
𝑙𝑖(𝜉) 𝑑𝜉

)

1≤𝑖≤𝑘+1

. (42)

5. Results and applications

In this section, we will present the numerical results obtained thanks to the virtual element schemes. First, we performed a 
validation of the scheme on problems with manufactured solutions. Then a more realistic test case is performed.

5.1. Test case with analytical solutions

Let us considered a domain 𝛺 ∶= [0, 1]× [0, 1] where we solve Eq.  (43) with Dirichlet and Robin’s boundary conditions Eq.  (43). 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑢 + 𝜅2 𝑢 = 𝑓 (𝑥, 𝑦) , in 𝛺 ,

𝑢 = 𝑢exact , on 𝛤2 ∪ 𝛤3 ∪ 𝛤4 ,
𝜕𝑢
𝜕𝑛

+ 𝑖 𝜅 𝑢= 𝑔(𝑥, 𝑦) , on 𝛤1, 𝛤1

𝛤2

𝛤3

𝛤4 𝛺 (43)

with the manufactured solution given by, 
𝑢exact(𝑥, 𝑦) = (𝑥 + 𝑦) ⋅ (1 + 𝑥𝑖) + exp(𝑥2 + 𝑖 𝑦2),

𝑓 (𝑥, 𝑦) = −((2𝑥)2 + (2 𝑖 𝑦)2 + 2(1 + 𝑖)) ⋅ exp(𝑥2 + 𝑖 𝑦2) + 𝜅2 ⋅ 𝑢exact(𝑥, 𝑦),

𝑔(𝑥, 𝑦) = (1 + 𝑖) + (2 𝑖 𝑦) ⋅ exp(𝑥2 + 𝑖 𝑦2) + 𝑖 𝜅 ⋅ 𝑢exact(𝑥, 𝑦).

(44)

and represented by Fig.  7.
For this analytical case, we take the geometry of a unit square and link it with regular triangles, irregular triangles, irregular 

quadrilaterals and polygons. To generate these meshes, we use the Gmsh [34] and PyPolyMesher [35,36]. We perform calculations 
from order 1 to order 5 on maximum cell diameters ℎ from 0.05 to 0.7 m. We then compute the 𝐿2 error for each calculation. The 
results are shown in Fig.  8.

We find the expected rate of convergence (ℎ𝑘+1).
14 
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Fig. 7. Real and imaginary part of 𝑢exact.

Fig. 8. Convergence tests for the problem Eq.  (43). Left: Different meshes used (regular triangle, unstructured triangle, unstructured quadrilaterals, polygons). 
Right: Associated 𝐿2 error for different orders 𝑘 and different cell diameters ℎ. Observed convergence of order (ℎ𝑘+1).

5.2. Relevance of robin boundary conditions
To show the interest of a Robin boundary condition in our problem, we look at the problem represented by Fig.  9. In this problem, 
we want to calculate the amplitude of reflected waves around an island. Thus, we have an incident wave arriving at 0◦ with an 15 
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Fig. 9. Sketch of the island reflection problem.

Fig. 10. Comparison of the results obtained on the island problem by solving the Helmholtz equation with a Robin condition (top) and a zero Neumann condition 
(bottom).

amplitude of 2 m and a period of 20 s. This wave is reflected on the boundary island 𝛤𝐷. On the other hand, the wave must be able 
to leave the domain freely via the boundary 𝛤inf.

The reflected wave is calculated by the following [9] equation and the wave leaving condition at infinity 𝛤inf will be studied for 
a Robin (red left) and zero Neumann (red right) condition. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑢 + 𝜅2 𝑢 = 0 , in 𝛺 ,

𝑢 = −𝑢inc , on 𝛤D ,
𝜕𝑢
𝜕𝑛

+ 𝑖 𝜅 𝑢= 0 , on 𝛤Inf.
or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑢 + 𝜅2 𝑢 = 0 , in 𝛺 ,

𝑢 = −𝑢inc , on 𝛤D ,
𝜕𝑢
𝜕𝑛

= 0 , on 𝛤Inf.

 The results of this study are shown in Fig.  10.

The reflected fields in Fig.  10 are significantly different depending on the two different boundary conditions.
16 
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Fig. 11. Configuration of our study of the port of Cherbourg. 

5.3. Application case: Wave field calculation in port of cherbourg

In this section, we apply the solution of the Helmholtz and Berkhoff equations to a coastal engineering problem. We take the case 
of the port of Cherbourg in France and calculate the associated wave fields under certain conditions. First, we select our study site, 
as shown in Fig.  11 (left). Next, we break down the contour into 3 different boundaries (Fig.  11 (center)): 𝛤𝐢𝐧 the harbor entrance, 
𝛤𝐨𝐮𝐭 the harbor exit and 𝛤𝐃 the port walls. Finally, we assign the correct boundary condition to these edges (Fig.  11 (right)).

The 𝛤𝐢𝐧 boundary condition is modeled by an inhomogeneous Dirichlet condition taking the incident field as argument. The 
𝛤𝐨𝐮𝐭 boundary condition is modeled by a Robin condition allowing the wave to exit without disturbing other wave fields. More 
information on this condition in Section 5.2. The 𝛤𝐃 boundary condition is modeled by an inhomogeneous Dirichlet condition with 
a reflection coefficient 𝛾. First, we will look at the importance of this reflection coefficient in Section 5.3.1. Finally, we will compare 
the results with different orders of the virtual element method, in Section 5.3.2.

5.3.1. Sensitivity of the 𝛾 reflection coefficient
In this section, we look at the influence of the harbor wall reflection coefficient 𝛾 on wave fields. We compare reflected and 

total wave fields for two different reflection coefficients, 𝛾 = 1 (Fig.  12 (top)) and 𝛾 = 0.5 (Fig.  12 (bottom)). For this study, we 
generate an incident wave field entering the harbor at 280 ◦ with a maximum amplitude 𝑢max = 1 m and a wave period 𝑇0 = 8 s. 
This incident field can be seen in Fig.  12 (left). The results of this study are shown in Fig.  12 with (i) on the left, the incident field 
(ii) in the middle, the reflected field (solution of the Helmholtz equation) (iii) on the right, the total field.

The results in Fig.  12 show that by halving the reflection coefficient 𝛾, the reflected wave field is also halved.

5.3.2. Sensitivity to order of resolution
In this section, we look at the influence of the order of solution of the virtual element method on the solution of the Helmholtz 

problem. We compare the reflected and total wave fields for two orders of resolution with fairly coarse mesh (Fig.  13), order 1 
(Fig.  13 top) with 81 degrees of freedom and order 5 (Fig.  13 bottom) with 881 degrees of freedom. For this study, we generate an 
incident wave field entering the harbor at 250 ◦ with a maximum amplitude 𝑢max = 1 m and a wave period 𝑇0 = 8 s. The results of 
this study are shown in Fig.  13 with (i) on the left, the incident field (ii) in the middle, the reflected field (solution of the Helmholtz 
equation) (iii) on the right, the total field.

Unsurprisingly, the results in Fig.  13 show that results in order 5 are more accurate than those in order 1.

6. Discussion

Convergence tests of our model on the Helmholtz equation showed its quasi-optimal convergence rates (Fig.  8). We modeled 
the port of Cherbourg, taking into account boundary conditions. The choice of a Robin condition proved relevant for the outflow 
condition, as shown in the Fig.  10 where it is clear that the wave reflected under Robin’s condition (top) can leave freely, while 
the wave reflected under Neumann’s condition (bottom) seems to be disturbed under this condition. A robin edge condition offers 
a clear advantage in terms of computation time, compared with perfectly matched layer (PML) conditions [38], which also allow 
the wave to pass, but require an additional computation on an extension of the domain.

Next, we have seen that the reflection coefficient of the walls plays a major role in the model results. Indeed, the results in Fig. 
12 showed a totally different total wave field (incident + reflected), so that the harbor’s eigenmodes are no longer located in exactly 
the same places for the two configurations. It is therefore very important to calibrate this reflection condition correctly.

Finally, we have seen that order can also play a major role in the accuracy of results, as shown by Fig.  13. Indeed, we note that 
with order 1, it is very difficult to capture the port’s eigenmodes, whereas with order 5, the port’s eigenmodes are distinguishable.
17 
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Fig. 12. Comparison of wave fields for the two reflection coefficients 𝛾 = 1 (top) and 𝛾 = 0.5 (bottom). Problem condition: 𝛼 = 280 ◦, 𝑢max = 1 m and 𝑇0 = 8 s.

Fig. 13. Comparison of wave fields for the two order of resolution 𝑘 = 1 (top) and 𝑘 = 5 (bottom). Problem condition: 𝛼 = 250 ◦, 𝑢max = 1 m and 𝑇0 = 8 s.
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Fig. 14. Comparison of wave fields for two different sea bottom: a flat bottom (top) and a linear bottom (bottom). Problem condition: 𝛼 = 280 ◦, 𝑢max = 2 m 
and 𝑇0 = 8 s.

Many precautions need to be taken to model the port as accurately as possible [20]. It is also possible to go further in the 
modeling by taking into account a variable bottom (which is not the case for the Helmholtz model). To do this, at lower cost, we 
can solve the following Mild-Slope equation Eq.  (B.1), taking into account bottom variability. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇(𝐶𝑝𝐶𝑔∇𝑢) + 𝜅2𝐶𝑝𝐶𝑔 𝑢 = 0, in 𝛺 ,

𝑢 = 𝑢𝐼 , in 𝛤in ,
𝜕𝑢
𝜕𝑛

+ 𝑖𝜅 𝑢 = 0, in 𝛤out ,
𝑢 = −𝛾 𝑢𝐼 in 𝛤D .

(45)

with 

𝐶𝑝 =
𝜔
𝜅

and 𝐶𝑔 = 1
2
𝐶𝑝

[

1 + 𝜅ℎ
1 − tanh2(𝜅ℎ)
tanh (𝜅ℎ)

]

. (46)

The choice of boundary conditions has been explained in the application Section 5.
To approximate this equation easily, simply consider 𝐶𝑝𝐶𝑔 and 𝜅2𝐶𝑝𝐶𝑔 constants per cell. Details of the variational formulation 

are given in Appendix  B.
The influence of a variable bottom on the calculation of wave fields can be seen directly in the following example. We compare 

a simulation with a flat bottom at a depth of 5 m (Fig.  14 top left) using the Helmholtz model, with a linear bottom (Fig.  14 bottom 
left) using the Berkhoff model. For this study, we generate an incident wave field entering the harbor at 280 ◦ with a maximum 
amplitude 𝑢max = 2 m and a wave period 𝑇0 = 8 s. To make the modeling more realistic, [39] breaking wave criterion is added. 
This decreases wave amplitude linearly with depth. This incident field can be seen in Fig.  14. The results of this study are shown 
in Fig.  14 from left to right: (i) the depth (ii) the incident field (iii) the reflected field (iv) the total field.

The results in Fig.  14 show that the lack of depth limits the formation of eigenmodes. In fact, in the flat-bottom simulation (top), 
eigenmodes are formed in the upper and lower parts of the harbor; whereas in the linear-bottom simulation (bottom), eigenmodes 
are no longer formed where there is almost no water: in the lower part of the harbor.

Remark 6.1.  For this model, the accuracy will be less good than Helmholtz’s due to the approximation made by cells.
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7. Conclusion

In this article, we have addressed a wave propagation problem in coastal engineering using the high-order Virtual Element 
Method (VEM). This approach offers significant improvements over classical finite element methods, particularly in its ability to 
handle complex, non-conforming meshes while maintaining high accuracy. It also enables the targeted computation of eigenmodes 
in geometrically intricate domains, such as harbor basins. A key contribution of this study lies in the detailed implementation of 
the VEM, including local projection operators and stabilization terms. Special emphasis was placed on the integration of a high-
order Robin boundary condition, which plays a crucial role in simulating open boundaries with minimal spurious reflections — an 
aspect rarely treated in the literature. The application to the port of Cherbourg demonstrated the method’s effectiveness in realistic 
settings. The results confirmed that simulation quality is highly sensitive to parameters such as the wall reflection coefficient and 
VEM order. These findings highlight the importance of proper parameter calibration for accurate coastal simulations. Overall, this 
work provides both a theoretical and practical framework for using VEM in wave modeling and may serve as a foundation for future 
studies involving hybrid methods or variable seabed. It offers a valuable tool for coastal engineers and applied mathematicians, in 
line with recent developments such as those in [20].
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Appendix A. Calculation details of Eq.  (39)

The following provides the detailed calculation for the expression derived in Eq.  (39). 

𝐑ℎ
𝑒 =

(

∫

𝜆

0
𝛼∗(𝜉0 + 𝜉)𝑙𝑖(𝜉)𝑙𝑗 (𝜉) 𝑑𝜉

)

0≤𝑖,𝑗≤𝑘
,

=
𝛼∗=𝛼=𝑐𝑡𝑒

(

𝛼
𝜆2𝑘 ∫

𝜆

0

[ 𝑘
∏

𝑚=0,𝑚≠𝑗

𝜉 − 𝜆𝑥𝑚GL
𝑥𝑖GL − 𝑥𝑚GL

𝑘
∏

𝑚=0,𝑚≠𝑗

𝜉 − 𝜆𝑥𝑚GL
𝑥𝑗GL − 𝑥𝑚GL

]

𝑑𝜉

)

0≤𝑖,𝑗≤𝑘

,

=
𝜉=𝜆𝜉′

𝑑𝜉=𝜆𝑑𝜉′

(

𝛼
𝜆2𝑘 ∫

1

0

[ 𝑘
∏

𝑚=0,𝑚≠𝑗

𝜆𝜉′ − 𝜆𝑥𝑚GL
𝑥𝑖GL − 𝑥𝑚GL

𝑘
∏

𝑚=0,𝑚≠𝑗

𝜆𝜉′ − 𝜆𝑥𝑚GL
𝑥𝑗GL − 𝑥𝑚GL

]

𝜆𝑑𝜉′
)

0≤𝑖,𝑗≤𝑘

,

=

(

𝛼
𝜆2𝑘 ∫

1

0

[ 𝑘
∏

𝑚=0,𝑚≠𝑗
𝜆

𝜉′ − 𝑥𝑚GL
𝑥𝑖GL − 𝑥𝑚GL

𝑘
∏

𝑚=0,𝑚≠𝑗
𝜆

𝜉′ − 𝑥𝑚GL
𝑥𝑗GL − 𝑥𝑚GL

]

𝜆𝑑𝜉′
)

0≤𝑖,𝑗≤𝑘

,

=

(

𝛼𝜆∫

1

0

[ 𝑘
∏

𝑚=0,𝑚≠𝑗

𝜉′ − 𝑥𝑚GL
𝑥𝑖GL − 𝑥𝑚GL

𝑘
∏

𝑚=0,𝑚≠𝑗

𝜉′ − 𝑥𝑚GL
𝑥𝑗GL − 𝑥𝑚GL

]

𝑑𝜉

)

0≤𝑖,𝑗≤𝑘

,

=𝛼 𝜆

(

∫

1

0
𝑙𝑗 (𝜉)𝑙𝑖(𝜉) 𝑑𝜉

)

0≤𝑖,𝑗≤𝑘

.

(A.1)

Appendix B. Solving the mild-slope equation

The amplitude of the reflected wave 𝑢𝑅 can also be obtained by solving the Berkhoff equation [10], in the case of a variable 
bottom, 

⎧

⎪

⎪

⎨

⎪

⎪

∇(𝐶𝑝𝐶𝑔∇𝑢) + 𝜅2𝐶𝑝𝐶𝑔 𝑢 = 0, in 𝛺 ,

𝑢 = 𝑢𝐼 , in 𝛤in ,
𝜕𝑢
𝜕𝑛

+ 𝑖𝜅 𝑢 = 0, in 𝛤out ,
(B.1)
⎩ 𝑢 = −𝛾 𝑢𝐼 in 𝛤D .
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with 

𝐶𝑝 =
𝜔
𝜅

and 𝐶𝑔 = 1
2
𝐶𝑝

[

1 + 𝜅ℎ
1 − tanh2(𝜅ℎ)
tanh (𝜅ℎ)

]

. (B.2)

The choice of boundary conditions has been explained in the application Section 5.

Remark.  In practice, 𝜅 is obtained simply by using the [40] approximation.
Now, we consider the [10] Eq.  (B.1) and thus the following variational formulation: 

{

find 𝑣 ∈ 𝑉 = 𝐻1
0 (𝛺) such that

𝐴(𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉 ,
(B.3)

where, 

𝐴(𝑢, 𝑣) = ∫𝛺
∇(𝐶𝑝𝐶𝑔∇𝑢 𝑣) + ∫𝛺

𝜅2𝐶𝑝𝐶𝑔 𝑢 𝑣 . (B.4)

Discrete Mild-Slope Problem.
The discrete problem read as follow. Find 𝑢ℎ ∈ 𝑉ℎ ⊂ 𝑉  such that 

find 𝑢ℎ ∈ 𝑉ℎ ⊂ 𝑉  such that 𝐴ℎ(𝑢ℎ, 𝑣ℎ) = 0 ∀𝑣ℎ ∈ 𝑉ℎ, (B.5)

where 𝑉ℎ ⊂ 𝑉  is a finite dimensional space and 𝐴ℎ( ⋅ , ⋅ ) : 𝑉ℎ × 𝑉ℎ → R is a discrete bilinear form approximating the continuous 
form 𝐴( ⋅ , ⋅ ).

We thus have the discrete form: 

𝐴ℎ(𝑢ℎ, 𝑣ℎ) =
∑

𝑇∈ℎ

[

∫𝑇
∇(𝐶𝑝𝐶𝑔∇𝑢ℎ𝑣ℎ) + ∫𝑇

𝑘2𝐶𝑝𝐶𝑔𝑢ℎ𝑣ℎ

]

,

≈
1∕|𝑇 | ∫𝑇 𝐶𝑝𝐶𝑔=𝑇

1∕|𝑇 | ∫𝑇 𝜅2𝐶𝑝𝐶𝑔=𝐸

∑

𝑇∈ℎ

[

𝑇 ∫𝑇
(𝛥𝑢ℎ 𝑣ℎ) + 𝑇 ∫𝑇

𝑢ℎ𝑣ℎ

]

,

=
green

𝜕𝑣∕𝜕𝑛=−𝑖𝑘𝑢

∑

𝑇∈𝛺ℎ

[

−𝑇 ∫𝑇
∇𝑢ℎ∇𝑣ℎ + 𝑇 ∫𝑇

𝑢ℎ𝑣ℎ − 1𝛤out⊂𝑇 𝑖𝑇 ∫𝛤out
𝜅 𝑢ℎ𝑣ℎ

]

,

= 𝑎ℎ(𝑢ℎ, 𝑣ℎ) + 𝑟ℎ(𝑢ℎ, 𝑣ℎ) .

(B.6)

with 𝑎ℎ and 𝑟ℎ the discrete forms of 𝑎 and 𝑟: defined in the same way as above, 1𝛤out⊂𝐸 the indicator function and 𝑢 = 𝑢 + 𝑢𝐷 and 
𝑢𝐷 is the lifting of −𝛾𝑢𝐼  or 𝑢𝐼  (depending on the border).

Remark.  Unlike the discrete formulation of the homogeneous Helmholtz equation [9] (see Section 3.3), the discrete formulation 
of the Berkhoff equation Eq.  (B.6) assumes that 𝜅2 and 𝐶𝑝𝐶𝑔 are constant for each cell in the mesh.
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