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Abstract
The Virtual Element Method (VEM), as a high-order polytopal method, offers significant ad-
vantages over traditional Finite Element Methods (FEM). In particular, it allows the handling
of polytopal or non-conforming meshes which greatly simplificates the mesh generation proce-
dure. In this paper, the VEM is used for the discretization of the Helmholtz equations with a
Robin-type absorbing boundary condition. This problem is crucial in various fields, including
coastal engineering, oceanography and the design of offshore structures. Details of the VEM
implementation with Robin boundary condition are given. Numerical results on test cases with
analytical solutions show that the methods can provide optimal convergence rates for smooth
solutions. Then, as a more realistic test case, the computation of the eigenmodes of the port
of Cherbourg is carried out.

Modelling Subjects Classification.

Keywords. Virtual Element Method, Polytopal Methods, Robin Boundary Condition, Helmholtz
Equation, Wave Propagation, Mild-Slope Equation, Coastal Engineering.

Table of content

1 Introduction 2

2 Physical Context 2
2.1 Hydrodynamics for Wave Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Virtual Element Method 5
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Virtual Element Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Discrete Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Implementation Guideline for the Virtual Element Method 11
4.1 Computing the Local Projection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Imposing Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Results and Applications 18
5.1 Test case with analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Relevance of Robin boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Application Case: Wave Field Calculation in Port of Cherbourg . . . . . . . . . . . . . . . . . 19

6 Discussion 23

7 Conclusion 24

Appendix 25

References 28

∗GEOSCIENCES-M, Univ Montpellier, CNRS, Montpellier, France and IMAG, Univ Montpellier, CNRS, Montpellier,
France. Email adress: ronan.dupont@umontpellier.fr

†Scuola Superiore Meridionale, Napoli, Italy. Email adress: mathias.dauphin-ssm@unina.it
‡CEA, DAM, DIF, Arpajon, France, CERMICS, Ecole des Ponts, Marne la Vallée cedex 2, and SERENA Project-Team,

INRIA Paris, Paris France. Email adress: romain.mottier@enpc.fr

1



DRAFT
1 Introduction
Nowadays, coastal modelling has become a major challenge in the face of climate change. The study of coastal
regions encompasses a wide array of topics, including (large-scale) ocean modelling, harbor modelling and
many other subjects such as morphodynamics. In this study, we are particularly interested in port modelling
using the Helmholtz equation [21]. The Helmholtz equation is a well-established model, widely applicable in
different fields such as electromagnetics and acoustics. Traditionally, in the context of the modelling of port
wave fields [10], the Helmholtz model is employed for flat seabeds. More elaborate models such as the mild-
slope equation [6] can be utilized for seabeds with varying topography, although it is typically constrained
to slopes not exceeding 1/3 [7].
The Virtual Element Method (VEM) is a brand-new numerical method recently introduced in [8]. It can be
seen as an extension of the classical Finite Element Method (FEM), however, it was historically developed
from the mimetic finite difference (MFD) method [11]. In fact, the real advantage of the VEM lies in the
fact that it allies the great generality allowed by the MFD method for the geometry of the elements and the
classical discretization path of the FEM. It allows the natural handling of polyhedral and non-conforming
meshes while retaining the H1-conformity [5]. For example, with such a property, mesh refinement procedure,
which often introduces hanging nodes, can easily be set up.
The paper is organized as follows. First, we introduce the physical context with the hydrodynamic and the
model problem we studied in this paper (in the section 2). Then, we devised the virtual element discretization
of these problems (in the section 3). A guide to the implementation of VEM and Robin’s boundary conditions
will then be presented in section 4. Finally, in the section 5, validation results and an application example
will be given on a concrete example from the port of Cherbourg.

2 Physical Context
In this section, we will present the physical and mathematical modelling of wave reflection. First, we will
derive the mild-slope and Helmholtz equations, which will capture wave behavior over variable and constant
seabed depths, respectively. Then, we will present the Helmholtz problem with mixed boundary conditions,
enabling the analysis of wave interactions within confined domains.

2.1 Hydrodynamics for Wave Reflection

We are interested in deriving a model equation to study wave reflection in ports. Let us consider an inviscid
fluid with constant density evolving in a 3D canal ending with a wall. As depicted in Fig. 1, the z-axis
points upward with origin z = 0 set at the mean water level. The sea bottom is defined below the origin
by z = −h(x, y), where h is the water column height that does not vary in time. We then assume that the
sea bottom is not susceptible to accretion or erosion. Finally, the free-surface elevation is defined above the
origin by z = ζ(x, y, t).
The flow is assumed to be incompressible and irrotational. Hence, as it is well-known (see e.g. [17]), there
exists a velocity potential Φ(x, y, z, t) that satisfies the Laplace equation:

∆Φ = 0.

Moreover, assuming a no-slip condition ∇Φ · n = 0 at the bottom z = −h, where n is the outward normal
to the seabed, and restricting the study of the free-surface elevation at z = 0 to the context of Airy’s linear
approximation wave theory [3], one can express Φ as a free-surface potential ϕ in the (x, y)-plane scaled by
a certain function:

Φ(x, y, z, t) = f(z, h)ϕ(x, y, t)

where, according to [7], the scaling function f reads
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z = 0

h(x, y)

Free surface ζ(x, y, t)

Fig. 1: Sketch of a free surface elevation ζ in the (x, z)-plane.

f(z, h) =
cosh(κ(z + h)

cosh(κh)

with κ(x, y) being the wavenumber which can be retrieved from the linear dispersion relation

ω = gκ tanh(κh)

with g the Earth’s gravity and ω = 2π/T the constant angular frequency associated with the wave period
T . Following the same principle as in [23], that is exploiting the Lagrangian formulation, we obtain the
following set of equations

g
∂ζ

∂t
+∇ · (CpCg∇ϕ) + (κ2CpCg − ω2)ϕ = 0

∂ϕ

∂t
+ gζ = 0

which can be restated to eliminate the free-surface potential ϕ and thus having the time-dependent mild-slope
equation for the free-surface elevation

−∂2ζ

∂t2
+∇ · (CpCg∇ζ) + (κ2CpCg − ω2)ζ = 0. (1)

From here, we can derive the mild-slope model and then the Helmholtz model for simulating wave reflection
in a given port geometry.

Mild-slope equation. The mild-slope equation allows us to describe the propagation of the reflected wave
above a certain depth z = −h(x, y). To derive it from Eq. (1), we apply the same principle as in [10], namely,
we decompose the free-surface elevation into an incident and a reflected part

ζ = ζR + ζI

where both parts can be split into their real-valued amplitude and phase

ζR(x, y) = u(x, y)e−iωt and ζI(x, y) = v(x, y)e−iωt

where the incident part is defined through θ, the incident wave angle, and vmax, the maximum wave amplitude

v(x, y) = vmaxe
−iκ·x with κ = κ(cos(θ), sin(θ))⊺.

By injecting the expression of ζR in Eq. (1), one can find the steady mild-slope equation for the reflected
amplitude
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∇ · (CpCg∇u) + κ2CpCgu = 0. (2)

Helmholtz Equation. The Helmholtz equation constitutes a weaker model than the mild-slope equation
in the sense that it relies on the hypothesis of constant depth h. Moreover, assuming Cg = Cp/2 (as in shallow
water approximation) and noting that Cp = ω/κ is constant, one can rewrite the mild-slope equation Eq. (2)
as the Helmholtz equation [21]:

∆u+ κ2u = 0. (3)

2.2 Model Problem

Let us consider a polygonal domain Ω ⊂ R2 whose boundary is partionned by mutually disjoint subsets such
that ∂Ω = ΓD ∪ ΓN ∪ ΓR, with |ΓR| > 0. The model problem is therefore the following boundary value
problem composed of the Helmholtz equation Eq. (3) together with mixed boundary conditions:



Find u ∈ H1(Ω) such that

∆u+ κ2 u = f, in Ω

u = gD, in ΓD ,

∂u

∂n
= gN , in ΓN ,

∂u

∂n
+ iκ u = gR, in ΓR .

(4)

where f ∈ H−1(Ω) is the load term and gD ∈ H
1
2 (ΓD), gN ∈ H− 1

2 (ΓN )and gR ∈ H− 1
2 (ΓR) are the functions

imposed at the corresponding borders. According to [24], this problem is well-posed under the assumptions
made on the domain and its boundary.
Let us define the following spaces:

V0 := {v ∈ H1(Ω): v|ΓD
= 0}

VD := {v ∈ H1(Ω): v|ΓD
= gD}

and let b : VD × V0 → R, m : VD × V0 → R and r : VD × V0 → R three bilinear forms and l : V0 → R a linear
form defined as follows

b(u, v) = −
∫
Ω

∇u ·∇v

m(u, v) = κ2

∫
Ω

uv

r(u, v) = −iκ
∫
ΓR

uv

l(v) =

∫
Ω

fv −
∫
ΓN

gNv −
∫
ΓR

gRv.

The weak formulation of Eq. (4) then writes{
Find u ∈ VD such that

a(u, v) = l(v), ∀v ∈ V0

(5)

where for all u, v ∈ VD × V0, a(u, v) = b(u, v) +m(u, v) + r(u, v)
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3 The Virtual Element Method
In this section, we expose the building steps of the VEM. As mentioned before, the method is similar to the
FEM in that it follows the same general construction—in fact, one can easily write a virtual element code
starting from a finite element code since the biggest difference lies in the computation of local matrices. The
VEM can be synthesized and implemented following four main steps divided into building blocks as depicted
in Fig. 2.
Once the domain Ω has been decomposed by a polygonal mesh Ωh, the first step consists of building the
Ciarlet triplet (T, Vh(T ),ΣT ) where T is an element of the mesh Ωh, Vh(T ) is the local virtual space defined
on T and ΣT is the local set of degrees of freedom attached to T .
Based on this three-block foundation, one can move up to the second block by constructing the global
virtual element space Vh by continuously glueing the local virtual spaces over all mesh elements. However,
the functions contained in the local virtual spaces are not known explicitly as in finite element but are defined
implicitly in such a way that they solve a local PDE on each mesh element—which is why they are referred
to as "virtual". Therefore, in order to render those functions computable, one needs to define a projection
operator Π onto a polynomial space, such that it can be computed from the degrees of freedom. Thanks to
the projection operator Π, the global space can be split into a polynomial part ΠVh and a non-polynomial
part (I − Π)Vh. In that regard, the virtual space is richer than the finite element space but remains a
conforming approximation in the sense that Vh ⊂ VD.
Now that an approximation space has been defined, one can move to the third block by specifying the
discrete variational problem where the discrete bilinear form ah is composed of two parts inherited from the
virtual space projection decomposition: a consistency part computed from Π and a stability part computed
from I −Π.
Finally, the last step corresponds to solving the linear system which is strictly equivalent to the discrete
variational problem, it is simply restated in algebraic form.

Ahuh = lh Linear System

ah lh Discrete Variational Problem

Vh = ΠVh ⊕ (I −Π)Vh Virtual Element Space

T Vh(T ) ΣT Virtual Element Triplet

Fig. 2: Fundamental building blocks for the Virtual Element Method

3.1 Preliminaries

Mesh decomposition. As in FEM, the first step for building the method is the discretization of the
computational domain Ω. But, contrary to the FEM, the VEM can handle polygonal meshes made out of a
wide variety of element shapes—that is, in the 2D case, not only simplices or quadrangles, but also general
polygons. This geometrical flexibility allows us to consider non-conforming elements with hanging nodes as
well as non-convex elements.
We therefore consider a polygonal decomposition (Ωh)h of the computational domain Ω defined as below.

Definition 3.1 (Polygonal mesh). A polygonal mesh is a tuple Ωh = (Th, Eh,Vh) such that

1. Th is a finite collection of non-empty open polygons T with boundary ∂T , centroid xT and diameter
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hT that forms a partition of Ω, i.e.

Ω =
⋃

T∈Th

T ∀ T1, T2 ∈ Th, T1 ̸= T2, T1 ∩ T2 = 0 (6)

2. Eh is a finite collection of non-empty open one-dimensional hyperplanes in such a way that for any
edge e ∈ Eh, either there exist T1, T2 ∈ Th, such that e ⊂ ∂T1∩∂T2 (in that case, e is called an internal
edge), either there exists T ∈ Th, such that e ⊂ ∂T ∩ ∂Ω (in that case, e is called a boundary edge)

3. Vh is a finite collection of vertices corresponding to the end points of each edge in Eh

where the index h corresponds to the mesh size, that is the maximal diameter among all the mesh elements.

In the following, NV , NE and NP will respectively denote the total number of vertices, edges and polygons
inside the mesh. At the local scale, NV

T and NE
T will denote the number of vertices and edges inside the

element T ∈ Th.
On top of that, for any element T ∈ Th, VT will denote the set of vertices of T and ET the set of edges of
T . For further purposes involving boundary conditions, we denote by E ih the collection of internal edges and
by Ebh the collection of boundary edges, such that Eh = E ih ∪ Ebh . More precisely, we will distinguish between
boundary edges inforced with Dirichlet condition Eb,dh , Neumann condition Eb,nh and Robin conditions Eb,rh .

In the following, we are interested in meshes made of regular-shaped elements, more specifically isotropic
meshes with non-degenerate faces. Isotropic means here that we do not consider elements that become
more and more stretched while refining the mesh and non-degenerate faces refer to edges whose diameter is
uniformly comparable to the diameter of the element to which it belongs. Then, we must assert the following
assumption to avoid badly shaped elements in the mesh.

Assumption 3.1 (Shape-regularity). A polygonal mesh Ωh is said to be shape-regular if there exists a real
number ρ ∈ (0, 1), independent of h, such that every element T ∈ Th is star-shaped with respect to a ball of
radius

rT ≥ ρhT (7)

where hT is the diameter of T .

In general, the mesh is assumed to be shape-regular as stated above. However, such an assumption is purely
theoretical, and, in practice, this condition can be weakened by considering the mesh to be shape-regular
whenever its elements consist of a union of star-shaped subsets [16].

Polynomial spaces. Let O ⊂ R2 be open. In the following, Pk(O) will denote the space of polynomials of
degree less than or equal to k over O, where O, in practice, can be an element T ∈ Th or an edge e ∈ Eh.
Since we are restricted to the two-dimensional case, we define

nk := dimPk(T ) =
(k + 1)(k + 2)

2
,

the dimension of the local polynomial space. We also consider a multiindex α = (α1, α2) ∈ N2 with length
|α| = α1 + α2 such that, if x = (x, y) ∈ R2, then xα = xα1yα2 . We will work with scaled monomials of the
form

mα :=

(
x− xO

hO

)α

(8)

where xO is the barycenter of O and hO its diameter. The set of all such polynomials of degree less than or
equal to k will be denoted by Mk(O) := {mα : |α| ≤ k}, which constitutes a basis of Pk(O).

For the sake of simplicity, we will associate to each scaled monomial of multi-index α = (α1, α2) a scalar
index α = ι(α) via the natural pairing
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(α1, α2) ←→ α

(0, 0) ←→ 1

(1, 0) ←→ 2

(0, 1) ←→ 3
...

...

which is given by the following formula

ι(α1, α2) =
(α1 + α2)(α1 + α2 + 1)

2
+ α2 + 1. (9)

3.2 Virtual Element Discretization

A virtual element is a particular type of finite element (T, Vh(T ), DT ) in the sense of Ciarlet [9, 15], where T

is a polygonal element of Th, Vh(T ) is a local space of dimension NT containing polynomials enriched with
non-polynomial functions defined implicitly through a local PDE on T and DT = {Di}1≤i≤NT

is the set of
local degrees of freedom. As a consequence, any local basis {φj}1≤j≤NT

satisfies

Di(φj) = δji , ∀i, j ∈ {1, . . . , NT }, (10)

with δji , the usual kronecker symbol. This relation is fundamental and is a consequence of the unisol-
vence property of the set of degrees of freedom—in other words, it expresses the fact that the operator
DT : v ∈ Vh(T )→ (D1(v), . . . , DNT

(v)) ∈ RNT is bijective [19].

Local Projection Operators. One of the key ingredient for building the VEM are projection operators
onto local polynomial spaces. They are essential to the virtual element discretization in order to compute
the virtual functions. Traditionally, two kind of projections are considered: the L2-projection and the
H1-projection—also called the elliptic projection.

Definition 3.2 (H1-Projection). Let T ∈ Th and k ≥ 1 be an integer. We define the H1-projection
Π1,k

T : Vh(T )→ Pk(T ) such that, for any v ∈ H1(T ),
∫
T

∇Π1,k
T vh ·∇p =

∫
T

∇vh ·∇p, ∀p ∈ Pk(T )/P0(T )

P0

(
Π1,k

T vh

)
= P0vh,

(11)

where P0 : Vh(T )→ P0(T ) is the projection operator onto constants defined by

P0vh =


1

NV

NV∑
i=1

vh(xi) for k = 1

1

|T |

∫
T

vh for k ≥ 2

. (12)

This operator is crucial for keeping the system Eq. (11) solvable. Indeed, as one can notice, the first row in
Eq. (11) does not hold when p ∈ P0(T ). That is why we fix this issue by adding another equality using the
projection operator onto constants.

Definition 3.3 (L2-Projection). Let T ∈ Th and k ≥ 0 an integer. We define the L2-projection Π0,k
T :

Vh(T )→ Pk(T ) such that, for any v ∈ L2(T ),∫
T

Π0,k
T vh p =

∫
T

vh p ∀p ∈ Pk(T ) (13)

Another important projection operator is the L2-projection of the gradient Π0,k−1
T : ∇Vh(T )→ Pk−1(T )2 de-

fined as above as gradients of functions of the virtual space ∇vh against vectorial polynomials p ∈ Pk−1(T )2.

7
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Local Virtual Space. We define the local virtual space for all T ∈ Th by

Vh(T ) =
{
vh ∈ H1(Ω) ∩ C0(∂T ) : (i) vh|E ∈ Pk(E), ∀E ⊂ ∂T

(ii) ∆v ∈ Pk−2(T )

(iii) (vh −Π1,k
T vh, p) = 0, ∀p ∈ Pk(T )/Pk−2(T )

}
.

(14)

The first two conditions (i) and (ii) show that this space is composed of functions that are polynomials of
degree at most k on the edges E of the element T such that they are globally continuous on the boundary
∂T—which means that there are no discontinuities at the nodes. Moreover, the virtual functions inside the
element are required to solve a Poisson problem in the weak sense.
It is possible to require the functions inside the element to verify another kind of local PDE. In fact, a
wide range of virtual spaces have been built by considering other local problems, such as the divergence-free
virtual space [12].
The last condition (iii) is added to render the L2-projection computable as firstly proposed in [2]. We are
then dealing with an enhanced virtual space which is larger than the classical one initially introduced in [8].

Local Degrees of Freedom. In order to represent our solution onto the mesh, we need to attach to each
local virtual space a set of local degrees of freedom (DOF). For a 2D VEM, there are three types of DOF
fixed to each geometrical component of the element (as depicted in Fig. 3) such that, for all T ∈ Th and for
vh ∈ Vh(T ), we select

1. the value of vh at the vertices of T : ∀V ∈ VT ,

DV (vh) = vh(xV ) (15)

where xV corresponds to the coordinates of vertex V ;

2. the value of vh at the k − 1 internal points of the (k + 1)-point Gauss-Lobatto quadrature rule or,
equivalently, the moments of vh against the monomials of degree up to k − 1 on the edge: ∀E ∈ ET ,

DE(vh) =
1

|E|

∫
E

vhmα (16)

with mα ∈Mk−1(E);

3. the moments of vh against the monomials of degree up to k − 2 in the element:

DT (vh) =
1

|T |

∫
T

vhmα (17)

with mα ∈Mk−2(T ).

k = 1 k = 2 k = 3

Fig. 3: 2D element with ● : vertex DOFs, ■ : Edge DOFs, ▲ : Cell DOFs.

The set of local degrees of freedom therefore consists of
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DT = {DV }V ∈VT

∪ {DE}E∈ET
∪ {DT }.

with

card(DT ) = NV
T + (k − 1)NE

T + nk−2 = kNV
T + nk−2 = dim(Vh(T )) = NT .

In the future, the set of DOFs will be indexed as DT = {Di}1≤i≤NT
, where the DOFs are being ordered as

above—that is vertices for 1 ≤ i ≤ NV
T , edges for NV

T +1 ≤ i ≤ kNV
T and cell for kNV

T +1 ≤ i ≤ kNV
T +nk−2.

3.3 Discrete Problem

As in the FEM, the discrete problem is written using the Galerkin method which reads{
Find uh ∈ Vh

ah(uh, vh) = lh(vh), ∀vh ∈ Vh.
(18)

The global approximation space Vh is obtained by glueing continuously the local virtual spaces Vh(T ) over
the all the elements T ∈ Th, that is

Vh = {vh ∈ H1(Ω) ∪ C0(Ω): vh|T ∈ Vh(T ), ∀T ∈ Th}

which dimension is

N = NV + (k − 1)NE +NTnk−2.

The only fundamental difference with the FEM relies on how the bilinear form ah and the load term lh
are defined. Indeed, the VEM exploits the orthogonal decomposition of the global space Vh with respect
to the L2-projection Π0,k

h for the mass term and the elliptic projection Π1,k
h for the stiffness. From those

decompositions, the bilinear form ah inherits a consistent term that is exact for polynomials and a stability
term that approximates the non-polynomial part of the virtual space.

Bilinear form ah. Before defining the global discrete bilinear form ah : Vh × Vh → R, we discretize each
term that makes it up, starting with the stiffness term bh : Vh × Vh → R which, for all uh, vh ∈ Vh, reads

bh(uh, vh) := −
∑
T∈Th

∫
T

∇Π1,k
T uh ·∇Π1,k

T vh −
∑
T∈Th

s1,Th

(
(I −Π1,k

T )uh, (I −Π1,k
T )vh

)
(19)

where s1,Th : Vh(T )×Vh(T )→ R is a bilinear form satisfying the stability property: for all vh ∈ Vh(T ), there
exist λ∗, λ

∗ > 0 such that

λ∗b(vh, vh) ≤ s1,Th

(
(I −Π1,k

T )vh, (I −Π1,k
T )vh

)
≤ λ∗b(vh, vh).

In the same spirit, we define the mass term mh : Vh × Vh → R for all uh, vh ∈ Vh by

mh(uh, vh) := κ2
∑
T∈Th

∫
T

Π0,k
T uh ·Π0,k

T vh + κ2
∑
T∈Th

s0,Th

(
(I −Π0,k

T )uh, (I −Π0,k
T )vh

)
(20)

where, as before, s0,Th : Vh(T ) × Vh(T ) → R is a stable bilinear form, i.e. for all vh ∈ Vh(T ), there exist
µ∗, µ

∗ > 0 such that

µ∗m(vh, vh) ≤ s1,Th

(
(I −Π0,k

T )vh, (I −Π0,k
T )vh

)
≤ µ∗m(vh, vh).

9
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Remark 3.1. The stabilisation term is required to hold the well-posedness of the discrete variational problem.
There are multiple ways of defining it, the most classical one being the so-called "dofi-dofi" stabilisation term
expressed as follows

sr,Th (uh, vh) = σr
T

NT∑
i=1

Di

(
(I −Πr,k

T )uh

)
Di

(
(I −Πr,k

T )vh

)
∀uh, vh ∈ Vh (21)

where r = 0, 1 enables us to distinguish between the stiffness and mass stabilization case and σr
T is a scaling

coefficient depending on each case. For r = 0, the coefficient usually scales as a gradient, typically σ0
T = h2

T

or σ0
T = |T |. For r = 1, we usually take σ1

T = 1.

Finally, we define the discrete boundary term rh : Vh×Vh → R inherited from the Robin boundary condition,
for all uh, vh ∈ Vh, by

rh(uh, vh) := −iκ
∑

E∈Eb,r
h

∫
E

uhvh.

Remark 3.2. Note that, in this case, no projection operator is needed before the virtual functions uh and
vh because, on the boundary of an element, they correspond to polynomials of degree k, which renders the
integral over the edge fully computable. However, this imply that we need to integrate a polynomial of degree
2k over the edge e, which is a delicate tack that we detail in the dedicated section 4.2

In the end, the global bilinear form ah : Vh × Vh → R is defined as the sum of all those term, i.e for all
uh, vh ∈ Vh we have

ah(uh, vh) := bh(uh, vh) +mh(uh, vh) + rh(uh, vh).

Load term lh. The load term lh : Vh → R writes, for all vh ∈ Vh

lh(vh) :=
∑
T∈Th

∫
T

fΠ0,k
T vh −

∑
E∈Eb,n

h

∫
E

gNvh −
∑

E∈Eb,r
h

∫
E

gRvh.

Linear System. By writing the discrete solution uh in the basis virtual basis as

uh =

N∑
i=1

Di(uh)φi,

one can rewrite Eq. (18) in its equivalent algebraic form as the system

Ahuh = lh (22)

where uh = (D1(uh), . . . , DN (uh))
T is the discrete unknown, lh = (lh(φj))1≤j≤N is the load term and

Ah = Kh+Mh+Rh is the global matrix formed by the sum of the matrices associated with the corresponding
terms

Kh = (bh(φi, φj))1≤i,j≤N

Mh = (mh(φi, φj))1≤i,j≤N

Rh = (rh(φi, φj))1≤i,j≤N

The challenging task now lies in the computation of those matrices. As explained in the next section,
it is achieved by applying the integration by part formula and exploiting the properties of the projection
operators.

10
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4 Implementation Guideline for the Virtual Element Method
In this section, we outline the implementation of the VEM, taking a closer look at the computation of local
projection matrices and the application of boundary conditions, specifically Robin boundary conditions. It
is worth mentioning to the interested reader that several implementation guides for the VEM have already
been published: the hitchhiker’s guide for the classical VEM [5], the guide for the divergence-free VEM for
mixed problem [14] and, more recently, more general implementation guides for coding the VEM in Matlab
[28, 22].
For the interesting reader that first wants to take the VEM in hand before coding it, we point out that there
already exist many open-source virtual element codes written in different programming languages. Here is a
non-exhaustive list: two oriented-object C++ libraries called Veamy [26] and Vem++ [13], a Python module
called dune-vem [15], a Matlab package called VEMLab, and many more.
Our programming approach follows the classical implementation path illustrated in Fig. 4 which relies on
three main steps that are almost self-sufficient in the sense that they can be coded and verified separately and
then connected all together to avoid errors. Depending on the programming language preferred, one could
adopt an object-oriented point of view and conceive each step as a class that contains the corresponding
objects and methods. Otherwise, a partial implementation can be considered by augmenting an already
existing finite element code since the structure is the same and the only main difference lies in the computation
of local matrices.

Mesh

Quadrature

DOFs

Basis

Projections Assembly

Error

Post-treatment

Discretization

Virtual Space Discrete Problem

Fig. 4: Implementation path for coding the virtual element method

Discretization. Any code for a polytopal method needs two basic tools: a mesh generator and quadra-
ture rules. The mesh generation can be achieved by using open-source software such as Gmsh [18] and
PyPolyMesher [1, 29] which can also handle polygonal and polyhedral decompositions. More generally, an
appropriate mesh structure should possess three main fields vertex, edge and polygon which contain the
indices and the important geometrical characteristics (coordinates, measure, centroid, etc.) of the corre-
sponding objects and their subordinate objects (e.g. the polygon field should contain the indices of all the
polygons in the mesh, their geometrical characteristics such as the area, the barycenter and so on, and, for
each polygon, it must return to the indices of their respective edges in the field edge).
The other crucial point is the quadrature rule for integrating functions, specifically polynomials. In general,
considering an open subset O ⊂ R2—which, in practice, can correspond to an element or an edge—, one
should equip the code with a quadrature rule Q(O) = ((xk, wk))1≤k≤nQ over O such that, for any function
f : O → R, we have

11
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∫
O
f(x)dx ≃

nQ∑
k=1

f(xk)wk. (23)

As stated above, the preferred quadrature rule for an edge is the Gauss-Lobatto one. For a polygon, one
can consider the quadrature rule composed of the ones on each triangle diving the polygon. Another recent
technique [4] makes use of the Stokes formula to express any integral over an element as a combination of
integrals over lower-dimensional objects (edges or vertices) as explained in [22].

Virtual Space. The core of the code is the computation of the local matrices. To perform such calculations,
three ingredients are required: a numbering of degrees of freedom, a way of evaluating the monomial basis
and, finally, a routine for computing local projections.
The numbering of degrees of freedom should be done globally and can be based on the indices given by the
mesh structure. It is usually done by ordering the DOFs in the following way: vertex DOFs, edge DOFs
and cell DOFs—just as globally as locally. The main difference at the local level is that the DOFs are, by
convention, arranged clockwise around the element.
Regarding the local basis, it is preferable to pre-compute the monomials at the points of interest (quadrature
points for instance) to save computational time. One can even pre-compute the entire monomial basis by
considering a matrix of the form (mi(xj))ij where the xj are the points of interest.
All those features are essential for computing the local projections as detailed below in section 4.1 where the
expression of the projection matrices, which is obtained by solving a system locally on the element, is then
used to compute the local stiffness and mass matrices.

Discrete Problem. Finally, the discrete problem is managed as in the H1-conforming FEM. Indeed, the
assembly is performed by addding up the local matrices to the global matrix. A sparse assembly with a
triplet containing the row index, the column index and the corresponding matrix value is preferred since it
is less time consuming. The solution obtained by resolution of the global linear system can then be used for
the error analysis and other possible post-treatment.

4.1 Computing the Local Projection Matrices

Local Stiffness Matrix. As explained above, one can write the local stiffness matrix KT for all T ∈ Th
by

KT =

∫
T

∇φi ·∇φj =

∫
T

∇ΠT
1,kφi ·∇ΠT

1,kφj + s1,Th

(
∇(I −ΠT

1,k)φi,∇(I −ΠT
1,k)φj

)
(24)

Therefore, to compute the stiffness matrix, it is sufficient to calculate the matrix Π1 associated with the
projection operator Π1,k

T . To do so, we exploit the relation Eq. (11) that characterizes the elliptic projection
for a certain virtual basis function φj , writing Π1,k

T φj in the monomial basis

Π1,k
T φj =

nk∑
i=1

sijmi, (25)

which gives us the following system

nk∑
i=1

sij

∫
T

∇mi ·∇mα =

∫
T

∇φj ·∇mα for 2 ≤ α ≤ nk

nk∑
i=1

sij P0mi = P0φj for α = 1

(26.a)

(26.b)

which writes equivalently in matrix form

12
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Gsj = Bj for 1 ≤ j ≤ NT fixed (27)

Matrix G. We denote by G the nk × nk matrix

G :=


P0m1 P0m2 · · · P0mnk

0 (∇m2,∇m2)0,T · · · (∇m2,∇mnk
)0,T

...
...

. . .
...

0 (∇mnk
,∇m2)0,T · · · (∇mnk

,∇mnk
)0,T

 . (28)

This matrix can easily be computed by integrating the monomials over the element T , using a quadrature
rule on T as in Eq. (23).

Once G has been computed, the system Eq. (27) can be extended by varying 1 ≤ j ≤ NT instead of keeping
it fixed. Hence, the right-hand side is not a vector anymore but a matrix.

Matrix B. We denote by B the nk ×NT matrix

B :=


P0φ1 · · · P0φNT

(∇m2,∇φ1)0,T · · · (∇m2,∇φNT
)0,T

...
. . .

...
(∇mnl

,∇φ1)0,T · · · (∇mnl
,∇φNT

)0,T

 . (29)

The first line of the matrix is easy to compute. Indeed, by using the expression of projection operator onto
constants P0 given by Eq. (12) and by recalling that φj satisfies Eq. (10), one has

B1j =

{
1 for k = 1

δ
kNV

T +1
j for k ≥ 2

for 1 ≤ j ≤ NT

For α ≥ 2, we perform an integration by part

Bαj =

∫
T

∇mα ·∇φj = −
∫
T

∆mαφj +

∫
∂T

(∇mα · n)φj .

The matrix can then be exactly split into two blocks corresponding to each integral of the right-hand side.
Let us start with the boundary integral, we have for 1 ≤ j ≤ kNV

T

Bαj =

∫
∂T

(∇mα · n)φj =
∑

E∈ET

∫
E

(∇mα · nE)φj

with nE the outward normal of the edge E. Since the basis function φj takes the value 1 at the point xj

and 0 everywhere else, the sum over the edges then reduces into one or two terms, depending if the point xj

is attached to a vertex Vj or an edge Ej

Bαj =

{
(∇mα(xj) · nEj

+∇mα(xj) · nEj+1
)wj if attached to Vj

(∇mα(xj) · nEj )wj if attached to Ej

where wj is the Gauss-Lobatto weight associated to the point xj .

On the other hand, for the integral over the element, by computing the Laplacian of mα (using Eq. (8)), we
get for kNV

T + 1 ≤ j ≤ kNV
T + 1 + nk−2

Bαj = −
∫
T

∆mαφj = −
α1(α1 − 1)

h2
T

∫
T

mβφj −
α1(α1 − 1)

h2
T

∫
T

mγφj

13
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T

•

•

•
Vj−1

Vj

Vj+1

Ej

Ej+1

nEj

nEj+1

Fig. 5: Sketch of integration over the edges of the element T .

where β = ι(α1− 2, α2) and γ = ι(α1, α2− 2) are the corresponding indices which can be computed through
Eq. (9) for α1, α2 ≥ 1. The first integral on the right-hand side corresponds to an internal degree of freedom
if and only if mβ ∈ Mk−2(T ), i.e. 1 ≤ β ≤ nk−2, otherwise it reduces to zero. By the same reasoning on
the second internal, we get that

Bαj =


− α1(α1 − 1)|T |

h2
T

if 1 ≤ β ≤ nk−2

− α2(α1 − 2)|T |
h2
T

if 1 ≤ γ ≤ nk−2

.

We can now solve the system and compute the matrix associated with the elliptic projection Π1
∗ = G−1B.

However Π1
∗ : Rnk → RNT represents the elliptic projection within the monomial basis Mk(T ). Therefore,

we need to compute an additional matrix that will allow us to write the matrix Π1 : RNT → RNT which
represents the elliptic projection within the virtual basis.

Matrix D. We denote by D the NT × nk matrix given by

D =


D1(m1) D1(m2) · · · D1(mnk

)

D2(m1) D2(m2) · · · D2(mnk
)

...
...

. . .
...

DNT
(m1) DNT

(m2) · · · DNT
(mnk

)

 . (30)

or, equivalently

Diα = Di(mα), for 1 ≤ i ≤ NT and 1 ≤ α ≤ nk,

This matrix can be easily computed from the expression of degrees of freedom. For the DOFs on the boundary
of the element (vertices and edges), it corresponds to the evaluation of the monomials at the corresponding
points xi—the vertex points in one case and the k − 1 internal Gauss-Lobatto points in the other. For
the DOFs inside the cell, it suffices to compute the moment of every monomial against the monomials
mj ∈Mk−2(T ). In short, we have

Diα =


mα(xi) for 1 ≤ i ≤ kNV

T

1

|T |

∫
T

mαmj for 1 ≤ j ≤ nk−2, and kNV
T + 1 ≤ i ≤ NT

.

Consequently, the matrix D : Rnk → RNT can be understood as a change-of-basis matrix from the basis of
monomials Mk(T ) to the virtual basis (φj)1≤j≤NT

of Vh(T ).

14



DRAFT
H1-Projection Π1. We denote by Π1 the matrix defined by

Π1 = DΠ1
∗ = D(G−1B). (31)

A practical way of checking that Π1 is well-computed is to check that

G = BD.

Finally, the local stiffness matrix KT reads

KT = (Π1
∗)

TG̃(Π1
∗) + σ1

T (I−Π1)T(I−Π1) (32)

where G̃ is equal to G except for the first row which is set to zero, and the stabilization parameter σ1
T = 1

as explained in remark 3.1.

Local L2-Projection. For all T ∈ Th, the local mass matrix MT can be written in the following form:

MT =

∫
T

φiφj =

∫
T

Π0,k
T φiΠ

0,k
T φj + s0,Th

(
(I −Π0,k

T )φi, (I −Π0,k
T )φj

)
.

To compute the local mass matrix, it is then sufficient to calculate the matrix Π0 associated with L2-
projection operator Π0,k

T . We consider the decomposition of Π0,k
T φj in the monomial basis

Π0,k
T φ =

nk∑
i=1

tijmi

which, injected in Eq. (13), gives us the following system

nk∑
i=1

tij

∫
T

mimα =

∫
T

φjmα for 1 ≤ α ≤ NT

which can also be written

Htj = Cj .

Matrix H. We denote by H the nk × nk matrix given by

H :=

 (m1,m1)0,T · · · (m1,mnk
)0,T

...
. . .

...
(mnk

,m2)0,T · · · (mnk
,mnk

)0,T

 , (33)

or, equivalently

Hαβ = (mα,mβ)0,T , for 1 ≤ α, β ≤ nk,

This matrix can easily be computed by integrating the monomials over the element T , using the quadrature
rule on T as in Eq. (23).

Matrix C. We denote by C the nk ×NT matrix given by

Cij := (mi, φj)0,T , for 1 ≤ i ≤ nk and 1 ≤ j ≤ NT (34)

This matrix can be treated into two different parts. First, we observe that, when 1 ≤ i ≤ nk−2, Cij can be
rewritten as a degree of freedom

Cij = |T |Di(φj) = |T |δji
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which gives us an identity matrix scaled by the area of the polygon |T | for the first block 1 ≤ i, j ≤ nk−2.
Then, when nk−2 + 1 ≤ i ≤ nk, one recognizes the enhancing condition of the virtual space defined above
Eq. (14) and we can hence write

Cij = (mi,Π
1,k
T φj)0,T = (HG−1B)ij .

L2-Projection Π0. We denote by Π0 the matrix defined by

Π0 = DΠ0
∗ = D(H−1C) (35)

A practical way of checking that Π0 is well-computed is to check that

H = CD.

Finally, the local mass matrix MT reads

MT = CTH−1C+ σ0
T (I−Π0)T(I−Π0) (36)

where the stabilization parameter σ0
T = |T | as explained in remark 3.1.

Local load term. The load term easily writes

lT = (Π0
∗)

TF

where F is the vector formed by the moments of f against the monomials ofMk(T ), i.e. F =
(∫

T
fm1, . . . ,

∫
T
fmnk

)T .

Global Assembly. Below, in the algorithm 1 algorithm, we propose a pseudo-code implementation of the
virtual element method and the algorithm 2 takes into account Dirichlet and Robin boundary conditions.

Algorithm 1 Global assembly of the linear system
1: for T ∈ Th do
2: Compute B, D, G, C, H
3: Compute Π1

∗, Π1, Π0
∗, Π0

4: Compute the local stiffness matrix: KT = (Π1
∗)

TG̃(Π1
∗) + (I−Π1)T(I−Π1)

5: Compute the local mass matrix: MT = CTH−1C+ |T |(I−Π0)T(I−Π0)

6: Ah ← Ah + (−KT + κ2MT ) ▷ Adds global contributions
7: end for

4.2 Imposing Boundary conditions

In this section, we focus on the implementation of mixed boundary conditions: a mixed Neumann and
Dirichlet condition with a particular emphasis on calculating the Robin term rh(uh, vh) in our variational
formulation.
Unlike the mass matrix Mh and the stiffness matrix Kh, which are calculated using the virtual element
formalism, the Robin matrix Rh is calculated in a manner analogous to Lagrange high-order finite elements,
with the difference that the degrees of freedom are not placed in the same locations on the edge.
We can express the global matrix Rh associated to the formulation rh in a basis of classical shape function,
thus

(Rh)ij =

(∫
ΓR

α(x, y)Φj(x, y),Φi(x, y)

)
ij

,

with α : R2 → R. The boundary ΓR can be decomposed into a sum of 1D elements that can be characterized
by the segment [ξ0, ξ0+λ] between two vertices V0 and V1. These elements are segments joining 2 consecutive
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Algorithm 2 Imposing boundary conditions in the linear system

1: for E ∈ Ebh do
2: if E ∈ Eb,rh then
3: Compute RE

4: Ah ← Ah +RE ▷ Adds global contributions
5: else if e ∈ Eb,dh then
6: Ah ← 1 ▷ Set the line to 0 and add a 1 to the correct DDL position
7: lh ← gD ▷ Set the value of the DC on this DDL
8: end if
9: end for

points of the edge. The Φi basis function attached to the i vertex of the edge, restricted to the edge element,
is a polynomial of degree k on the edge. These characteristic 1D elements are shown in Fig. 6 with the
degrees of freedom corresponding to the Gauss-Lobatto quadrature points on [0,λ]. Consequently, the higher
the order, the more points there will be on the segment.

V0

V1

x1
GL

x0
GL

k = 1

V0

V1

||V1 V0||  =

x2
GL

x1
GL

x0
GL

k = 2

V0

V1

x3
GLx2

GLx1
GLx0

GL

k = 3

Fig. 6: 1D element [ξ0, ξ0 + λ] representation for different orders k, with ● : Summits dofs, ■ : Edges dofs.

In this way, we can express the local edge matrix for all E ∈ Eb,rh

RE =

(∫ λ

0

α∗(ξ0 + ξ)li(ξ)lj(ξ) dξ

)
0≤i,j≤k

(37)

with li, lj polynomial test functions of order k, α∗(ξ0 + ξ) = α(V0 + ξ t⃗ ) the 1D restriction of α and t⃗

the tangential unit vector (from V0 to V1). We can easily deduce the explicit form of li because we have
∀ i, j ∈ J0, kK,

li(λxj
GL) = δij , (38)

with xj
GL the j − th Gauss-Lobatto quadrature point on [0,1] (see Fig. 6). We can therefore deduce from

the Lagrange polynomials:

li(ξ) =

k∑
j=0

δij

 k∏
m=0,m ̸=j

ξ − λxm
GL

λxj
GL − λxm

GL

 =
1

λk

k∏
m=0,m̸=i

ξ − λxm
GL

xi
GL − xm

GL
.

For example, for k = 1, l0(ξ) = λ−ξ
λ and l1(ξ) =

ξ
λ .

Now we can compute the local matrix Rh
E of size (k + 1, k + 1) through Eq. (37). All we need to do is

calculate the integrals using a quadrature method, such as Gauss-Lobatto, which was introduced in the
section on virtual elements, section 3.
After that, Rh is assembled in the same way as conventional finite element assemblies. Except that here,
instead of iterating over all the DOFs of all the elements in the mesh, we only iterate among the DOFs of
the edges belonging to ΓR.

Remark 4.1. Let us give the a few more useful points:
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• In the case where α is a constant function (which is the case for the Helmholtz equation), we can

simplify the Eq. (37) using a change of variable to obtain the following local matrix equation Eq. (39)
(see calculation in appendix A for more details).

RE =

(∫ λ

0

α∗(ξ0 + ξ)li(ξ)lj(ξ) dξ

)
0≤i,j≤k

= αλ

(∫ 1

0

l̃i(ξ)l̃j(ξ) dξ

)
0≤i,j≤k

, (39)

with l̃i the polynomials for a unit element [ξ0, ξ0+1]. So all we need to do is evaluate the integral equa-
tion Eq. (39) once to obtain all the local matrices of the boundary segments. Moreover, this integral
deals with a polynomial of degree 2k, which can be evaluated exactly using a quadrature method with
k + 2 Gauss-Lobatto points.

• In the case where the Robin boundary condition is inhomogeneous, the approach is similar. We express
the matrix analogously to the matrix in (37).

L =

∫
ΓR

β(x, y)Φi(x, y). (40)

with β : R2 → R. Then we express the local matrix always on the segments characterized by [ξ0, ξ0 + δ],

LE =

(∫ λ

0

β∗(ξ0 + ξ)li(ξ) dξ

)
1≤i≤k+1

, (41)

with li a polynomial test function of order k, β∗(ξ0 + ξ) = β(V0 + ξ t⃗ ) the 1D restriction of β on ΓR

and t⃗ the tangential unit vector (from V0 to V1). Here, we calculate and assemble this matrix as before.
Moreover, we can always simplify the calculation of this matrix if β is a constant function, then

LE = λβ

(∫ 1

0

l̃i(ξ) dξ

)
1≤i≤k+1

. (42)

5 Results and Applications
In this section, we will present the numerical results obtained thanks to the virtual element schemes. First,
we performed a validation of the scheme on problems with manufactured solutions. Then a more realistic
test case is performed.

5.1 Test case with analytical solutions

Let us considered a domain Ω := [0, 1] × [0, 1] where we solve the Eq. (43) with Dirichlet and Robin’s
boundary conditions Eq. (43).

∆u+ κ2 u = f(x, y) , in Ω ,

u = uexact , on Γ2 ∪ Γ3 ∪ Γ4 ,

∂u

∂n
+ i κ u= g(x, y) , on Γ1, Γ1

Γ2

Γ3

Γ4 Ω (43)

with the manufactured solution given by,

uexact(x, y) = (x+ y) · (1 + xi) + exp(x2 + i y2),

f(x, y) = −((2x)2 + (2 i y)2 + 2(1 + i)) · exp(x2 + i y2) + κ2 · uexact(x, y),

g(x, y) = (1 + i) + (2 i y) · exp(x2 + i y2) + i κ · uexact(x, y).

(44)
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Fig. 7: Real and Imaginary part of uexact.

and represented by the Fig. 7.
For this analytical case, we take the geometry of a unit square and link it with regular triangles, irregular
triangles, irregular quadrilaterals and polygons. To generate these meshes, we use the Gmsh [18] and
PyPolyMesher [1, 29]. We perform calculations from order 1 to order 5 on maximum cell diameters h from
0.05 to 0.7 m. We then compute the L2 error for each calculation. The results are shown in Fig. 8.
We find the expected rate of convergence O(hk+1).

5.2 Relevance of Robin boundary conditions

To show the interest of a Robin boundary condition in our problem, we look at the problem represented
by the Fig. 9. In this problem, we want to calculate the amplitude of reflected waves around an island.
Thus, we have an incident wave arriving at 0 ◦ with an amplitude of 2 m and a period of 20 s. This wave is
reflected on the boundary island ΓD. On the other hand, the wave must be able to leave the domain freely
via the boundary Γinf.
The reflected wave is calculated by the following [21] equation and the wave leaving condition at infinity Γinf

will be studied for a Robin (left) and zero Neumann (right) condition.
∆u+ κ2 u = 0 , in Ω ,

u = −uinc , on ΓD ,

∂u

∂n
+ i κ u= 0 , on ΓInf.

or


∆u+ κ2 u = 0 , in Ω ,

u = −uinc , on ΓD ,

∂u

∂n
= 0 , on ΓInf.

The results of this study are shown in the Fig. 10.
The reflected fields in the Fig. 10 are significantly different depending on the two different boundary condi-
tions.

5.3 Application Case: Wave Field Calculation in Port of Cherbourg

In this section, we apply the solution of the Helmholtz and Berkhoff equations to a coastal engineering
problem. We take the case of the port of Cherbourg in France and calculate the associated wave fields under
certain conditions. First, we select our study site, as shown in the Fig. 11 (left). Next, we break down the
contour into 3 different boundaries (Fig. 11 (center)): Γin the harbour entrance, Γout the harbour exit and
ΓD the port walls. Finally, we assign the correct boundary condition to these edges (Fig. 11 (right)).
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Fig. 8: Convergence of order O(hk+1).

The Γin boundary condition is modeled by an inhomogeneous Dirichlet condition taking the incident field as
argument. The Γout boundary condition is modeled by a Robin condition allowing the wave to exit without
disturbing other wave fields. More information on this condition in section 5.2. The ΓD boundary condition
is modeled by an inhomogeneous Dirichlet condition with a reflection coefficient γ. First, we’ll look at the
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Fig. 9: Sketch of the island reflection problem.
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Fig. 10: Comparison of the results obtained on the island problem by solving the Helmholtz equation with a Robin
condition (top) and a zero Neumann condition (bottom).

importance of this reflection coefficient in the section 5.3.1. Finally, we will compare the results with different
orders of the virtual element method, in section 5.3.2.

5.3.1 Sensitivity of the γ reflection coefficient

In this section, we look at the influence of the harbor wall reflection coefficient γ on wave fields. We compare
reflected and total wave fields for two different reflection coefficients, γ = 1 (Fig. 12 (top)) and γ = 0.5

(Fig. 12 (bottom)). For this study, we generate an incident wave field entering the harbour at 280 ◦ with
a maximum amplitude umax = 1 m and a wave period T0 = 8 s. This incident field can be seen in the Fig.
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Port location Port boundary

The Helmholtz equation:

∆u+ κ2u = 0, in Ω ,

u = uI , in Γin ,

∂u

∂n
+ iκ u = 0, in Γout ,

u = −γ uI , in ΓD .

Fig. 11: Configuration of our study of the port of Cherbourg

12 (left). The results of this study are shown in the Fig. 12 with i) on the left, the incident field ii) in the
middle, the reflected field (solution of the Helmholtz equation) iii) on the right, the total field.
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Fig. 12: Comparison of wave fields for the two reflection coefficients γ = 1 (top) and γ = 0.5 (bottom). Problem
condition: α = 280 ◦, umax = 1 m and T0 = 8 s.

The results in the Fig. 12 show that by halving the reflection coefficient γ, the reflected wave field is also
halved.
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5.3.2 Sensitivity to order of resolution

In this section, we look at the influence of the order of solution of the virtual element method on the solution
of the Helmholtz problem. We compare the reflected and total wave fields for two orders of resolution with
fairly coarse mesh (Fig. 13), order 1 (Fig. 13 top) with 81 degrees of freedom and order 5 (Fig. 13 bottom)
with 881 degrees of freedom. For this study, we generate an incident wave field entering the harbour at 250
◦ with a maximum amplitude umax = 1 m and a wave period T0 = 8 s. The results of this study are shown
in Fig. 13 with i) on the left, the incident field ii) in the middle, the reflected field (solution of the Helmholtz
equation) iii) on the right, the total field.
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Fig. 13: Comparison of wave fields for the two order of resolution k = 1 (top) and k = 5 (bottom). Problem
condition: α = 250 ◦, umax = 1 m and T0 = 8 s.

Unsurprisingly, the results in the Fig. 13 show that results in order 5 are more accurate than those in order
1.

6 Discussion
Convergence tests of our model on the Helmholtz equation showed its superconvergence (Fig. 8). We modeled
the port of Cherbourg, taking into account boundary conditions. The choice of a Robin condition proved
relevant for the outflow condition, as shown in the Fig. 10 where it’s clear that the wave reflected under
Robin’s condition (top) can leave freely, while the wave reflected under Neumann’s condition (bottom) seems
to be disturbed under this condition. A robin edge condition offers a clear advantage in terms of computation
time, compared with perfectly matched layer (PML) conditions [27], which also allow the wave to pass, but
require an additional computation on an extension of the domain.
Next, we have seen that the reflection coefficient of the walls plays a major role in the model results. Indeed,
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the results in the Fig. 12 showed a totally different total wave field (incident + reflected), so that the
harbour’s eigenmodes are no longer located in exactly the same places for the two configurations. It is
therefore very important to calibrate this reflection condition correctly.
Finally, we have seen that order can also play a major role in the accuracy of results, as shown by the Fig.
13. Indeed, we note that with order 1, it’s very difficult to capture the port’s eigenmodes, whereas with
order 5, the port’s eigenmodes are distinguishable.
Many precautions need to be taken to model the port as accurately as possible [10]. It is also possible to go
further in the modelling by taking into account a variable bottom (which is not the case for the Helmholtz
model). To do this, at lower cost, we can solve the following Mild-Slope equation Eq. (B1), taking into
account bottom variability. 

∇(CpCg∇u) + κ2CpCg u = 0, in Ω ,

u = uI , in Γin ,

∂u

∂n
+ iκ u = 0, in Γout ,

u = −γ uI in ΓD .

(45)

with

Cp =
ω

κ
and Cg =

1

2
Cp

[
1 + κh

1− tanh2(κh)

tanh (κh)

]
. (46)

The choice of boundary conditions has been explained in the application section 5.
To approximate this equation easily, simply consider CpCg and κ2CpCg constants per cell. Details of the
variational formulation are given in appendix B.
The influence of a variable bottom on the calculation of wave fields can be seen directly in the following
example. We compare a simulation with a flat bottom at a depth of 5 m (Fig. 14 top left) using the
Helmholtz model, with a linear bottom (Fig. 14 bottom left) using the Berkhoff model. For this study, we
generate an incident wave field entering the harbour at 280 ◦ with a maximum amplitude umax = 2 m and
a wave period T0 = 8 s. To make the modelling more realistic, [25] breaking wave criterion is added. This
decreases wave amplitude linearly with depth. This incident field can be seen in figure 14. The results of
this study are shown in the Fig. 14 from left to right: i) the depth ii) the incident field iii) the reflected field
iv) the total field.
The results in the Fig. 14 show that the lack of depth limits the formation of eigenmodes. In fact, in the
flat-bottom simulation (top), eigenmodes are formed in the upper and lower parts of the harbor; whereas in
the linear-bottom simulation (bottom), eigenmodes are no longer formed where there is almost no water: in
the lower part of the harbor.

Remark 6.1. For this model, the accuracy will be less good than Helmholtz’s due to the approximation made
by cells.

7 Conclusion
In this article, we have addressed a coastal engineering problem using the virtual element formalism. This
study has highlighted a formalism that is more precise than traditional formalisms, and above all, can
handle complex meshes, enabling eigenmodes to be targeted on a given geometry. Thanks to a description
of the implementation of the virtual elements, we have been able to provide a guide line for dealing with
these wave problems. In addition, the implementation of a high-order Robin condition is something that
is rarely mentioned in the literature. The results of the application on the port of Cherbourg showed that
it is essential to choose the right parameters, such as the reflection coefficient of the walls and the order
of calculation of the virtual element method. This study could be useful to coastal engineers interested in
numerical mathematics, wishing to tackle development problems on coastal structures as was done in [10].

24



DRAFT
-120 0 120

0

120

240

360

480

y

Depth [m]

-120 0 120
0

120

240

360

480

Incident field

-120 0 120
0

120

240

360

480

Reflected field

-120 0 120
0

120

240

360

480

Total field

-120 0 120
x

0

120

240

360

480

y

Depth [m]

-120 0 120
x

0

120

240

360

480

Incident field

-120 0 120
x

0

120

240

360

480

Reflected field

-120 0 120
x

0

120

240

360

480

Total wave field

1

2

3

4

2.4

1.8

1.2

0.6

0.0

0.6

1.2

1.8

2.4

4.5

3.0

1.5

0.0

1.5

3.0

4.5

6.0

4

3

2

1

0

1

2

3

4

1

2

3

4

2.4

1.8

1.2

0.6

0.0

0.6

1.2

1.8

2.4

4.5

3.0

1.5

0.0

1.5

3.0

4.5

6.0

4

3

2

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

Solving the Mild-Slope problem.

0.0

0.2

0.4

0.6

0.8

1.0

Solving the Helmholz problem.

Fig. 14: Comparison of wave fields for two different sea bottom: a flat bottom (top) and a linear bottom (bottom).
Problem condition: α = 280 ◦, umax = 2 m and T0 = 8 s.
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Appendix

A Calculation details of Eq. (39)
The following provides the detailed calculation for the expression derived in Eq. (39).

Rh
e =(

∫ λ

0

α∗(ξ0 + ξ)li(ξ)lj(ξ) dξ)0≤i,j≤k ,

=
α∗=α=cte

(
α

λ2k

∫ λ

0

 k∏
m=0,m ̸=j

ξ − λxm
GL

xi
GL − xm

GL

k∏
m=0,m ̸=j

ξ − λxm
GL

xj
GL − xm

GL

 dξ)0≤i,j≤k ,

=
ξ=λξ′

dξ=λdξ′

(
α

λ2k

∫ 1

0

 k∏
m=0,m ̸=j

λξ′ − λxm
GL

xi
GL − xm

GL

k∏
m=0,m̸=j

λξ′ − λxm
GL

xj
GL − xm

GL

λdξ′)0≤i,j≤k ,

=(
α

λ2k

∫ 1

0

 k∏
m=0,m ̸=j

λ
ξ′ − xm

GL
xi

GL − xm
GL

k∏
m=0,m̸=j

λ
ξ′ − xm

GL

xj
GL − xm

GL

λdξ′)0≤i,j≤k ,

=(αλ

∫ 1

0

 k∏
m=0,m ̸=j

ξ′ − xm
GL

xi
GL − xm

GL

k∏
m=0,m ̸=j

ξ′ − xm
GL

xj
GL − xm

GL

 dξ)0≤i,j≤k ,

=αλ(

∫ 1

0

l̃j(ξ)l̃i(ξ) dξ)0≤i,j≤k .

(A1)

B Solving the Mild-Slope equation
The amplitude of the reflected wave uR can also be obtained by solving the Berkhoff equation [6], in the
case of a variable bottom, 

∇(CpCg∇u) + κ2CpCg u = 0, in Ω ,

u = uI , in Γin ,

∂u

∂n
+ iκ u = 0, in Γout ,

u = −γ uI in ΓD .

(B1)

with

Cp =
ω

κ
and Cg =

1

2
Cp

[
1 + κh

1− tanh2(κh)

tanh (κh)

]
. (B2)

The choice of boundary conditions has been explained in the application section 5.

Remark: In practice, κ is obtained simply by using the [20] approximation.

Now, we consider the [6] equation Eq. (B1) and thus the following variational formulation:{
find v ∈ V = H1

0 (Ω) such that

A(v, w) = 0 ∀w ∈ V,
(B3)

where,

A(u, v) =

∫
Ω

∇(CpCg∇v w) +
∫
Ω

κ2CpCg v w . (B4)
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Discrete Mild-Slope Problem.

The discrete problem read as follow. Find uh ∈ Vh ⊂ V such that

find uh ∈ Vh ⊂ V such thatAh(uh, vh) = 0 ∀vh ∈ Vh, (B5)

where Vh ⊂ V is a finite dimensional space and Ah( · , · ) : Vh × Vh → R is a discrete bilinear form
approximating the continuous form A( · , · ).
We thus have the discrete form:

Ah(vh, wh) =
∑
T∈Th

[∫
T

∇(CpCg∇vhwh) +

∫
T

k2CpCgvhwh

]
,

≈
1/|T |

∫
T
CpCg=AT

1/|T |
∫
T
κ2CpCg=BE

∑
T∈Th

[
AT

∫
T

(∆vh wh) + BT
∫
T

vhwh

]
,

=
green

∂v/∂n=−iku

∑
T∈Ωh

[
−AT

∫
T

∇vh∇wh + BT
∫
T

vhwh − 1Γout⊂T iAT

∫
Γout

κ vhwh

]
,

= ah(vh, wh) + rh(vh, wh) .

(B6)

with ah and rh the discrete forms of a and r: defined in the same way as above, 1Γout⊂E the indicator
function and u = u+ uD and uD is the lifting of −γuI or uI (depending on the border).

Remark: Unlike the discrete formulation of the homogeneous Helmholtz equation [21] (see section 3.3),
the discrete formulation of the Berkhoff equation Eq. (B6) assumes that κ2 and CpCg are constant for each
cell in the mesh.
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