

Presentation of projects:

Modeling Fluid Computations and Structures - CFD

Contents:

- Modelling the spread of epidemics on the French territory with the SIR model.
- Contributions of tide and wind on water levels, overcoasts and port oscillations.
- Solving the Euler bi-fluid equations, application with the calculation code BBAMR.
- Numerical Method: Mesh of a sphere.
- Ocean modeling with the ROMS calculation code.
- Falling of a box in the water in 2D with Ansys Fluent.
- Other projects

Modelling the spread of epidemics on the French territory with the SIR model.

- Modeling and solving partial differential equation (PDE) systems with python scattering.
- Change from SIR model to SZR model of zombie propagation.
- Image processing and display.

$$\begin{array}{l}
\boxed{S} \xrightarrow{\beta} \boxed{I} \xrightarrow{\gamma} \boxed{R} \\
\begin{cases}
\frac{\partial S}{\partial t} = -\beta SI \\
\frac{\partial I}{\partial t} = \beta SI - \gamma I \\
\frac{\partial R}{\partial t} = \gamma I
\end{cases}$$

Covid-19 evolution with the SIR model

Propagation with the SZR model from Toulon

Dupont Ronan

Contributions of tide and wind on water levels, overcoasts and port oscillations: Study based on temporal data of water levels by a network of instruments in the Var and the Bouches-du-Rhône departments.

- Data exploitation in Matlab.
- Highlighting of tidal peaks/seiches using sliding averages and Fourier transforms.
- Creation of wind roses
- Modeling a probabilistic model

Nouvelle rose des vents de Porquerolles

v0 (m/s)	5		10		15	
σ (cm)	5	10	5	10	5	10
P(VNS) (%)	1.9	1.3	0.4	0.26	0.027	0.027
P(V) (%)	9.9	9.9	1.7	1.7	0.04	0.04
P(S) (%)	26.5	12.3	26.5	12.3	26.5	12.3
P(V S) (%)	7.3	10.5	1.6	2.1	0.1	0.22
P(S V) (%)	19.6	13.1	25	15.3	67	67
P(V)*P(S) (%)	2.6	1.2	0.44	0.21	0.01	0.049
Indépendant	non	oui	oui	oui	non	non
Erreur relative indépendance moyenne	26%	7%	7%	14%	61%	69%
Dépendance entre le vent d'Est (α =90) et les surcotes. Influence de v0 et σ						

V: wind S: overcoast

Solving bi-fluid Euler equations, application with the calculation code BBAMR

- Resolution in Fortran 90.
- Resolution by the Finite Volume method using different schemes (Godunov, HLLC, Lax) on Fortran.
- Display and exploitation of the solutions on the Visit software.
- Use of a calculation code and creation of rigid fluids.

Dupont Ronan

Numerical Method: Mesh of a sphere

- Modeling of the surface mesh (2D) of a sphere in Fortran 90 and display in Python.
- Creation of types and functions allowing the numbering of vertices and the storage of their coordinates.
- Application to simple diffusion problems.

Ocean Modeling with ROMS calculation code

- Use of the calculation code ROMS and the display software NOAA Ferret.
- Getting to grips with the calculation code with its various numerical resolution parameters.

 Highlighting of typical phenomena of a particular dynamic: seasonal temperature, upwellings...

Seasonal Temperature Variations at Benguela

Highlighting upwelling in Benguela

Currents from July to October at Benguela

Falling of a box in the water in 2D with Ansys Fluent

- Theoretical model study: statistical approach (RANS method)
- Closing equations with the k-E model
- Mesh sensitivity

Other projects

Full reports: click on the link on the right.

- Numerical analysis: finite differences / Monte-Carlo.
- **Stochastic computation:** Monte-Carlo, quantization algorithms (K-mean, Kohonen), minimization algorithms (CEP).
- Numerical Method: Heat Equation / Nonlinear Thermal Diffusion / Transport Equation.
- Finite volumes: Road traffic modeling.
- FreeFem++: Solving the advection-diffusion equation.
- **Hydrodynamics:** Wave spectral analysis / Stresses on a cylinder with uniform flow / Shaoling effect.
- Fluid Mechanics: Coriolis / Turbulent boundary layer / Spin(up/down) effect.